Medium entropy alloy wavy nanowires as highly effective and selective alcohol oxidation reaction catalysts for energy-saving hydrogen production and alcohol upgrade†

EES catalysis Pub Date : 2024-07-25 DOI:10.1039/D4EY00090K
Xiaoyang Fu, Chengzhang Wan, Huaixun Huyan, Sibo Wang, Ao Zhang, Jingxuan Zhou, Hongtu Zhang, Xun Zhao, Jun Chen, Xiaoqing Pan, Yu Huang and Xiangfeng Duan
{"title":"Medium entropy alloy wavy nanowires as highly effective and selective alcohol oxidation reaction catalysts for energy-saving hydrogen production and alcohol upgrade†","authors":"Xiaoyang Fu, Chengzhang Wan, Huaixun Huyan, Sibo Wang, Ao Zhang, Jingxuan Zhou, Hongtu Zhang, Xun Zhao, Jun Chen, Xiaoqing Pan, Yu Huang and Xiangfeng Duan","doi":"10.1039/D4EY00090K","DOIUrl":null,"url":null,"abstract":"<p >Alcohol-assisted water electrolysis offers an attractive path for on-demand hydrogen generation while concurrently producing value added carboxylates. However, the anodic alcohol oxidation reaction (AOR) often requires precious metal-based catalysts, yet is still plagued with high overpotential or limited mass activity. Herein we report a facile synthesis of medium entropy Au-doped PtAgRhCu alloy wavy nanowires for highly efficient AORs. The alloy design facilitates hydroxyl adsorption that promotes the conversion of the carbonaceous intermediates (<em>e.g.</em> CH<small><sub>3</sub></small>CO*) to carboxylate products and weakens the adsorption of carboxylate products, resulting in greatly enhanced mass activity for four-electron AORs and highly selective upgrade of ethanol and ethylene glycol into value added acetate and glycolate. Furthermore, we constructed an alcohol assisted water electrolyser that delivers a current density of 100 mA cm<small><sup>−2</sup></small> at a cell voltage lower than 0.6 V and a current density of 1 A cm<small><sup>−2</sup></small> at a cell voltage of 1.2 V.</p>","PeriodicalId":72877,"journal":{"name":"EES catalysis","volume":" 6","pages":" 1285-1292"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ey/d4ey00090k?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EES catalysis","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/ey/d4ey00090k","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Alcohol-assisted water electrolysis offers an attractive path for on-demand hydrogen generation while concurrently producing value added carboxylates. However, the anodic alcohol oxidation reaction (AOR) often requires precious metal-based catalysts, yet is still plagued with high overpotential or limited mass activity. Herein we report a facile synthesis of medium entropy Au-doped PtAgRhCu alloy wavy nanowires for highly efficient AORs. The alloy design facilitates hydroxyl adsorption that promotes the conversion of the carbonaceous intermediates (e.g. CH3CO*) to carboxylate products and weakens the adsorption of carboxylate products, resulting in greatly enhanced mass activity for four-electron AORs and highly selective upgrade of ethanol and ethylene glycol into value added acetate and glycolate. Furthermore, we constructed an alcohol assisted water electrolyser that delivers a current density of 100 mA cm−2 at a cell voltage lower than 0.6 V and a current density of 1 A cm−2 at a cell voltage of 1.2 V.

Abstract Image

中熵合金波浪形纳米线作为高效和选择性酒精氧化反应催化剂,用于节能制氢和酒精升级
酒精辅助水电解为按需制氢并同时生产增值羧酸盐提供了一条极具吸引力的途径。然而,阳极醇氧化反应(AOR)通常需要贵金属催化剂,但仍存在过电位高或质量活性有限的问题。在此,我们报告了一种用于高效 AOR 的中等熵金掺杂 PtAgRhCu 合金波浪形纳米线的简便合成方法。合金设计有利于羟基吸附,从而促进碳质中间体(如 CH3CO*)氧化为羧酸盐产物,并削弱羧酸盐产物的吸附,从而大大提高了四电子 AOR 的质量活性,并将乙醇和乙二醇高选择性地升级为高附加值的乙酸盐和乙醇酸盐。此外,我们还构建了一种醇辅助水电解器,在电池电压低于 0.6 V 时,其电流密度为 100 mA/cm2;在电池电压为 1.2 V 时,其电流密度为 1 A/cm2。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信