Robin R. Dawson , Isla S. Castañeda , Stephen J. Burns , Jeffrey M. Salacup , Nick Scroxton , David McGee , Peterson Faina , Laurie R. Godfrey , Lovasoa Ranivoharimanana
{"title":"Investigating the application of organic geochemical techniques to tropical Anjohibe (Madagascar) stalagmites","authors":"Robin R. Dawson , Isla S. Castañeda , Stephen J. Burns , Jeffrey M. Salacup , Nick Scroxton , David McGee , Peterson Faina , Laurie R. Godfrey , Lovasoa Ranivoharimanana","doi":"10.1016/j.orggeochem.2024.104810","DOIUrl":null,"url":null,"abstract":"<div><p>Speleothem stable carbon isotopes (δ<sup>13</sup>C<sub>carb</sub>) are used to reconstruct past environments, but are a complex signal of karst, soil and plant processes. To help untangle these signals, we used plant waxes, their carbon isotopic values (δ<sup>13</sup>C<sub>wax</sub>) and polycyclic aromatic hydrocarbons (PAHs) extracted from stalagmites to evaluate plant photosynthetic pathway (C<sub>3</sub> vs C<sub>4</sub>) and biomass burning above a cave. Our test case investigates stalagmites from Anjohibe in Madagascar where at around 1000 CE multiple δ<sup>13</sup>C<sub>carb</sub> records increase by ∼ 8–10 ‰. This suggests that humans transformed the local landscape from C<sub>3</sub> vegetation to C<sub>4</sub> grasses through agropastoral practices, which rely on burning to promote grass growth. We evaluated different protocols to remove contamination, finding higher biomarker yields after polishing off the surface of the stalagmite versus ultrasonic pre-cleaning in solvent. Anjohibe stalagmites include <em>n-</em>alkanes from trees and grasses; however, bulk organic δ<sup>13</sup>C and δ<sup>13</sup>C<sub>wax</sub> from samples dated to after the transition to the modern C<sub>4</sub> landscape yield values suggesting C<sub>3</sub> vegetation. This is likely due to a disproportionally higher contribution of C<sub>3</sub> waxes to the overall <em>n</em>-alkane signal. PAHs are present in the stalagmite but do not match the types found in overlying soils and further testing is required to determine their source. We find that δ<sup>13</sup>C values of bulk organic carbon, or plant waxes extracted from stalagmites, should be interpreted with caution as the proportion of plant matter on the landscape does not necessarily equate to the proportion of organic molecules produced by those plants or preserved in the sedimentary record.</p></div>","PeriodicalId":400,"journal":{"name":"Organic Geochemistry","volume":"195 ","pages":"Article 104810"},"PeriodicalIF":2.6000,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0146638024000755/pdfft?md5=eba34ccd10bd13b84d56a1a0223e2c72&pid=1-s2.0-S0146638024000755-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic Geochemistry","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0146638024000755","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Speleothem stable carbon isotopes (δ13Ccarb) are used to reconstruct past environments, but are a complex signal of karst, soil and plant processes. To help untangle these signals, we used plant waxes, their carbon isotopic values (δ13Cwax) and polycyclic aromatic hydrocarbons (PAHs) extracted from stalagmites to evaluate plant photosynthetic pathway (C3 vs C4) and biomass burning above a cave. Our test case investigates stalagmites from Anjohibe in Madagascar where at around 1000 CE multiple δ13Ccarb records increase by ∼ 8–10 ‰. This suggests that humans transformed the local landscape from C3 vegetation to C4 grasses through agropastoral practices, which rely on burning to promote grass growth. We evaluated different protocols to remove contamination, finding higher biomarker yields after polishing off the surface of the stalagmite versus ultrasonic pre-cleaning in solvent. Anjohibe stalagmites include n-alkanes from trees and grasses; however, bulk organic δ13C and δ13Cwax from samples dated to after the transition to the modern C4 landscape yield values suggesting C3 vegetation. This is likely due to a disproportionally higher contribution of C3 waxes to the overall n-alkane signal. PAHs are present in the stalagmite but do not match the types found in overlying soils and further testing is required to determine their source. We find that δ13C values of bulk organic carbon, or plant waxes extracted from stalagmites, should be interpreted with caution as the proportion of plant matter on the landscape does not necessarily equate to the proportion of organic molecules produced by those plants or preserved in the sedimentary record.
期刊介绍:
Organic Geochemistry serves as the only dedicated medium for the publication of peer-reviewed research on all phases of geochemistry in which organic compounds play a major role. The Editors welcome contributions covering a wide spectrum of subjects in the geosciences broadly based on organic chemistry (including molecular and isotopic geochemistry), and involving geology, biogeochemistry, environmental geochemistry, chemical oceanography and hydrology.
The scope of the journal includes research involving petroleum (including natural gas), coal, organic matter in the aqueous environment and recent sediments, organic-rich rocks and soils and the role of organics in the geochemical cycling of the elements.
Sedimentological, paleontological and organic petrographic studies will also be considered for publication, provided that they are geochemically oriented. Papers cover the full range of research activities in organic geochemistry, and include comprehensive review articles, technical communications, discussion/reply correspondence and short technical notes. Peer-reviews organised through three Chief Editors and a staff of Associate Editors, are conducted by well known, respected scientists from academia, government and industry. The journal also publishes reviews of books, announcements of important conferences and meetings and other matters of direct interest to the organic geochemical community.