Magnetohydro-convective instability in a saturated Darcy–Brinkman medium with viscous dissipation

IF 1.6 4区 物理与天体物理 Q3 PHYSICS, CONDENSED MATTER
Anil Kumar, D. Bhargavi, P. G. Siddheshwar
{"title":"Magnetohydro-convective instability in a saturated Darcy–Brinkman medium with viscous dissipation","authors":"Anil Kumar,&nbsp;D. Bhargavi,&nbsp;P. G. Siddheshwar","doi":"10.1140/epjb/s10051-024-00738-9","DOIUrl":null,"url":null,"abstract":"<div><p>The influence of dissipation with viscosity on magnetohydro-convective instability in a saturated Darcy–Brinkman medium is examined. The bottom boundary is designated as adiabatic, whereas the top boundary is isothermal. Numerical linear stability analysis investigates normal modes that disturb the horizontal base flow at different inclinations. The case study shows that the most unstable disturbances are horizontal rolls, normal modes characterized by a wave vector perpendicular to the main flow direction. The horizontal rolls are the favored instability mode. Barletta et al. also showed that horizontal rolls are more unstable than any other oblique roll mode in the hydromagnetic scenario. This finding provides insights into the behavior of MHD fluid flow and heat transfer in porous media, with implications for applications in geoscience, engineering, and environmental science.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><img></picture></div></div></figure></div></div>","PeriodicalId":787,"journal":{"name":"The European Physical Journal B","volume":"97 7","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal B","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjb/s10051-024-00738-9","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

Abstract

The influence of dissipation with viscosity on magnetohydro-convective instability in a saturated Darcy–Brinkman medium is examined. The bottom boundary is designated as adiabatic, whereas the top boundary is isothermal. Numerical linear stability analysis investigates normal modes that disturb the horizontal base flow at different inclinations. The case study shows that the most unstable disturbances are horizontal rolls, normal modes characterized by a wave vector perpendicular to the main flow direction. The horizontal rolls are the favored instability mode. Barletta et al. also showed that horizontal rolls are more unstable than any other oblique roll mode in the hydromagnetic scenario. This finding provides insights into the behavior of MHD fluid flow and heat transfer in porous media, with implications for applications in geoscience, engineering, and environmental science.

Graphical abstract

Abstract Image

Abstract Image

具有粘性耗散的饱和达西-布林克曼介质中的磁流对流不稳定性
研究了粘性耗散对饱和达西-布林克曼介质中磁流体对流不稳定性的影响。下边界被指定为绝热边界,而上边界为等温边界。数值线性稳定性分析研究了扰动不同倾角水平基流的法向模式。案例研究表明,最不稳定的扰动是水平滚动,这种法向模式的特点是波矢量垂直于主流动方向。水平滚动是最受欢迎的不稳定模式。Barletta 等人的研究还表明,在水磁情况下,水平滚动比任何其他斜滚动模式都更不稳定。这一发现为多孔介质中的 MHD 流体流动和传热行为提供了见解,并对地球科学、工程学和环境科学的应用产生了影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
The European Physical Journal B
The European Physical Journal B 物理-物理:凝聚态物理
CiteScore
2.80
自引率
6.20%
发文量
184
审稿时长
5.1 months
期刊介绍: Solid State and Materials; Mesoscopic and Nanoscale Systems; Computational Methods; Statistical and Nonlinear Physics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信