On some applications of property (A) ((σ-A)) at a point

IF 0.6 4区 数学 Q3 MATHEMATICS
Liang-Xue Peng
{"title":"On some applications of property (A) ((σ-A)) at a point","authors":"Liang-Xue Peng","doi":"10.1016/j.topol.2024.109023","DOIUrl":null,"url":null,"abstract":"<div><p>If <em>X</em> is a hereditarily metacompact <em>ω</em>-scattered space and <em>X</em> has a <em>σ</em>-<em>NSR</em> pair-base at every point of <em>X</em>, then <em>X</em> has a <em>σ</em>-<em>NSR</em> pair-base. If <em>X</em> is a hereditarily meta-Lindelöf <em>ω</em>-scattered space and <em>X</em> has a <em>σ</em>-<em>NSR</em> pair-base at every point of <em>X</em>, then <em>X</em> has property (<em>σ</em>-A). If <em>X</em> is a hereditarily meta-Lindelöf GO-space such that every condensation set of <em>X</em> has property (<em>σ</em>-A), then <em>X</em> has property (<em>σ</em>-A). We point out that there is a gap in the proof of Lemma 37 in <span><span>[18]</span></span>. We give a detailed proof for the result. We finally show that if <span><math><mo>(</mo><mi>X</mi><mo>,</mo><mi>τ</mi><mo>,</mo><mo>&lt;</mo><mo>)</mo></math></span> is a GO-space and <span><math><msup><mrow><mi>X</mi></mrow><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></msup></math></span> has property (A) for some <span><math><mi>n</mi><mo>∈</mo><mi>N</mi></math></span>, then <em>X</em> has property (A), where <span><math><msup><mrow><mi>X</mi></mrow><mrow><mo>(</mo><mn>0</mn><mo>)</mo></mrow></msup><mo>=</mo><mi>X</mi></math></span>, <span><math><msup><mrow><mi>X</mi></mrow><mrow><mo>(</mo><mi>i</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow></msup><mo>=</mo><mo>{</mo><mi>x</mi><mo>∈</mo><msup><mrow><mi>X</mi></mrow><mrow><mo>(</mo><mi>i</mi><mo>)</mo></mrow></msup><mo>:</mo><mi>x</mi></math></span> is not an isolated point of <span><math><msup><mrow><mi>X</mi></mrow><mrow><mo>(</mo><mi>i</mi><mo>)</mo></mrow></msup><mo>}</mo></math></span> for each <span><math><mi>i</mi><mo>&lt;</mo><mi>n</mi></math></span>. If <em>X</em> is a hereditarily meta-Lindelöf <em>ω</em>-scattered GO-space, then <em>X</em> has a <em>σ</em>-<em>NSR</em> pair-base and <span><math><msup><mrow><mi>X</mi></mrow><mrow><mi>ω</mi></mrow></msup></math></span> is hereditarily a <em>D</em>-space.</p></div>","PeriodicalId":51201,"journal":{"name":"Topology and its Applications","volume":"355 ","pages":"Article 109023"},"PeriodicalIF":0.6000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topology and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166864124002086","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

If X is a hereditarily metacompact ω-scattered space and X has a σ-NSR pair-base at every point of X, then X has a σ-NSR pair-base. If X is a hereditarily meta-Lindelöf ω-scattered space and X has a σ-NSR pair-base at every point of X, then X has property (σ-A). If X is a hereditarily meta-Lindelöf GO-space such that every condensation set of X has property (σ-A), then X has property (σ-A). We point out that there is a gap in the proof of Lemma 37 in [18]. We give a detailed proof for the result. We finally show that if (X,τ,<) is a GO-space and X(n) has property (A) for some nN, then X has property (A), where X(0)=X, X(i+1)={xX(i):x is not an isolated point of X(i)} for each i<n. If X is a hereditarily meta-Lindelöf ω-scattered GO-space, then X has a σ-NSR pair-base and Xω is hereditarily a D-space.

关于性质 (A) ((σ-A)) 在点上的一些应用
如果 是一个遗传元紧凑散布空间,并且在 , 的每一点上都有一个 - 对基,那么具有一个 - 对基。如果 是一个遗传元林德罗夫散布空间,并且在 , 的每一点上都有一个 - 对基,那么具有性质 (-A)。如果 是一个遗传元林德罗夫 GO 空间,使得 的每一个凝集都具有性质 (-A),那么 具有性质 (-A)。我们指出,.GO 空间中的 Lemma 37 的证明存在空白。我们给出了该结果的详细证明。我们最后证明,如果 是一个 GO 空间,并且 对某个 , 具有性质 (A),那么 具有性质 (A),其中对每个 , , 不是一个孤立点。如果 是一个遗传的元林德罗夫散布的 GO 空间,那么 有一个 - 对基,并且是一个遗传的 - 空间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
33.30%
发文量
251
审稿时长
6 months
期刊介绍: Topology and its Applications is primarily concerned with publishing original research papers of moderate length. However, a limited number of carefully selected survey or expository papers are also included. The mathematical focus of the journal is that suggested by the title: Research in Topology. It is felt that it is inadvisable to attempt a definitive description of topology as understood for this journal. Certainly the subject includes the algebraic, general, geometric, and set-theoretic facets of topology as well as areas of interactions between topology and other mathematical disciplines, e.g. topological algebra, topological dynamics, functional analysis, category theory. Since the roles of various aspects of topology continue to change, the non-specific delineation of topics serves to reflect the current state of research in topology. At regular intervals, the journal publishes a section entitled Open Problems in Topology, edited by J. van Mill and G.M. Reed. This is a status report on the 1100 problems listed in the book of the same name published by North-Holland in 1990, edited by van Mill and Reed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信