Improving MPI and hyperthermia performance of superparamagnetic iron oxide nanoparticles through fractional factorial design of experiments†

IF 4.6 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Yanchen Li, Rui Zhang, Roman Barmin, Elena Rama, Max Schoenen, Franziska Schrank, Volkmar Schulz, Ioana Slabu, Fabian Kiessling, Twan Lammers and Roger M. Pallares
{"title":"Improving MPI and hyperthermia performance of superparamagnetic iron oxide nanoparticles through fractional factorial design of experiments†","authors":"Yanchen Li, Rui Zhang, Roman Barmin, Elena Rama, Max Schoenen, Franziska Schrank, Volkmar Schulz, Ioana Slabu, Fabian Kiessling, Twan Lammers and Roger M. Pallares","doi":"10.1039/D4NA00378K","DOIUrl":null,"url":null,"abstract":"<p >Superparamagnetic iron oxide nanoparticles (SPIONs) are widely used for biomedical applications, including magnetic particle imaging (MPI) and magnetic hyperthermia. The co-precipitation method is one of the most common synthetic routes to obtain SPIONs, since it is simple and does not require extreme conditions, such as high temperatures. Despite its prevalence, however, the co-precipitation synthesis presents some challenges, most notably the high batch-to-batch variability, as multiple factors can influence nanoparticle growth. In this study, we utilized a fractional factorial design of experiments to identify key factors influencing SPION growth, properties, and performance in MPI and magnetic hyperthermia, namely Fe<small><sup>3+</sup></small> content, pH, temperature, stirring, and atmosphere. Notably, our study unveiled secondary interactions, particularly between temperature and Fe<small><sup>3+</sup></small> content, as well as pH and Fe<small><sup>3+</sup></small> content, for which simultaneous changes of both parameters promoted greater effects than the sum of each factor effect alone, emphasizing the impact of synergistic effects on SPION growth and performance. These findings provide a deeper understanding of the growth mechanism of SPIONs, reconcile discrepancies in the existing literature, and underscore the importance of characterizing secondary interactions to improve the performance of SPIONs for biomedical applications.</p>","PeriodicalId":18806,"journal":{"name":"Nanoscale Advances","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/na/d4na00378k?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale Advances","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/na/d4na00378k","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Superparamagnetic iron oxide nanoparticles (SPIONs) are widely used for biomedical applications, including magnetic particle imaging (MPI) and magnetic hyperthermia. The co-precipitation method is one of the most common synthetic routes to obtain SPIONs, since it is simple and does not require extreme conditions, such as high temperatures. Despite its prevalence, however, the co-precipitation synthesis presents some challenges, most notably the high batch-to-batch variability, as multiple factors can influence nanoparticle growth. In this study, we utilized a fractional factorial design of experiments to identify key factors influencing SPION growth, properties, and performance in MPI and magnetic hyperthermia, namely Fe3+ content, pH, temperature, stirring, and atmosphere. Notably, our study unveiled secondary interactions, particularly between temperature and Fe3+ content, as well as pH and Fe3+ content, for which simultaneous changes of both parameters promoted greater effects than the sum of each factor effect alone, emphasizing the impact of synergistic effects on SPION growth and performance. These findings provide a deeper understanding of the growth mechanism of SPIONs, reconcile discrepancies in the existing literature, and underscore the importance of characterizing secondary interactions to improve the performance of SPIONs for biomedical applications.

Abstract Image

Abstract Image

通过分数因子实验设计提高超顺磁性氧化铁纳米粒子的 MPI 和热疗性能
超顺磁性氧化铁纳米粒子(SPIONs)被广泛应用于生物医学领域,包括磁粉成像(MPI)和磁热疗法。共沉淀法是获得 SPIONs 最常见的合成途径之一,因为这种方法简单且不需要高温等极端条件。然而,尽管共沉淀合成法非常普遍,但它也面临着一些挑战,其中最突出的是批次间的高变异性,因为多种因素都会影响纳米粒子的生长。在本研究中,我们利用分数因子实验设计来确定影响 SPION 生长、特性以及在 MPI 和磁热效应中性能的关键因素,即 Fe3+ 含量、pH 值、温度、搅拌和气氛。值得注意的是,我们的研究揭示了次生相互作用,尤其是温度与 Fe3+ 含量以及 pH 值与 Fe3+ 含量之间的相互作用,这两个参数的同时变化所产生的影响大于每个因素单独影响的总和,从而强调了协同效应对 SPION 生长和性能的影响。这些发现加深了人们对 SPION 生长机理的理解,协调了现有文献中的差异,并强调了表征次级相互作用对提高 SPION 在生物医学应用中的性能的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nanoscale Advances
Nanoscale Advances Multiple-
CiteScore
8.00
自引率
2.10%
发文量
461
审稿时长
9 weeks
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信