{"title":"Class group and factorization in orders of a PID","authors":"Hyun Seung Choi","doi":"10.1016/j.jnt.2024.06.008","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we study properties of factorization in orders of a PID via the computation of algebraic invariants that measure the failure of unique factorization. The focus is on the numerical semigroup rings over a finite field and the orders of imaginary quadratic fields with class number 1. We also give a complete description of the class group structure of those rings.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022314X24001537","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we study properties of factorization in orders of a PID via the computation of algebraic invariants that measure the failure of unique factorization. The focus is on the numerical semigroup rings over a finite field and the orders of imaginary quadratic fields with class number 1. We also give a complete description of the class group structure of those rings.