Density of power-free values of polynomials II

Pub Date : 2024-07-17 DOI:10.1016/j.jnt.2024.06.010
Kostadinka Lapkova , Stanley Yao Xiao
{"title":"Density of power-free values of polynomials II","authors":"Kostadinka Lapkova ,&nbsp;Stanley Yao Xiao","doi":"10.1016/j.jnt.2024.06.010","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper we prove that polynomials <span><math><mi>F</mi><mo>(</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>⋯</mo><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo><mo>∈</mo><mi>Z</mi><mo>[</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>⋯</mo><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>]</mo></math></span> of degree <span><math><mi>d</mi><mo>≥</mo><mn>3</mn></math></span>, satisfying certain hypotheses, take on the expected density of <span><math><mo>(</mo><mi>d</mi><mo>−</mo><mn>1</mn><mo>)</mo></math></span>-free values. This extends the authors' earlier result in <span><span>[14]</span></span> where a different method implied the similar statement for polynomials of degree <span><math><mi>d</mi><mo>≥</mo><mn>5</mn></math></span>.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0022314X24001550/pdfft?md5=5679964f477441d43dd0509c9504b52e&pid=1-s2.0-S0022314X24001550-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022314X24001550","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we prove that polynomials F(x1,,xn)Z[x1,,xn] of degree d3, satisfying certain hypotheses, take on the expected density of (d1)-free values. This extends the authors' earlier result in [14] where a different method implied the similar statement for polynomials of degree d5.

分享
查看原文
多项式无幂值密度 II
在本文中,我们证明了满足特定假设的Ⅴ度多项式具有无穷值的期望密度。这扩展了作者早先的结果,在早先的结果中,一种不同的方法隐含了对......度多项式的类似声明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信