A Reconfigurable Ge Transistor Functionally Diversified by Negative Differential Resistance

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Andreas Fuchsberger;Lukas Wind;Daniele Nazzari;Alexandra Dobler;Johannes Aberl;Enrique Prado Navarrete;Moritz Brehm;Lilian Vogl;Peter Schweizer;Sebastian Lellig;Xavier Maeder;Masiar Sistani;Walter M. Weber
{"title":"A Reconfigurable Ge Transistor Functionally Diversified by Negative Differential Resistance","authors":"Andreas Fuchsberger;Lukas Wind;Daniele Nazzari;Alexandra Dobler;Johannes Aberl;Enrique Prado Navarrete;Moritz Brehm;Lilian Vogl;Peter Schweizer;Sebastian Lellig;Xavier Maeder;Masiar Sistani;Walter M. Weber","doi":"10.1109/JEDS.2024.3432971","DOIUrl":null,"url":null,"abstract":"A promising approach to advance electronics beyond static operations is to enhance state-ofthe- art systems by the functional diversification of transistors. Here, we experimentally demonstrate that an ultra-thin Ge channel implemented on a Si on insulator platform enables run-time switchable symmetric pand n-type field-effect transistor operability as well as the prominent feature of distinct room-temperature negative differential resistance. Temperature dependent bias spectroscopy is utilized to map electronic transport in these so called negative differential resistance mode reconfigurable transistors. Thereof, a profound understanding of the involved transport physics and electrostatic gating mechanisms is obtained and evaluated. Further, we show that a multi-gate negative differential resistance reconfigurable transistor can effectively replace a cascode of negative differential resistance devices, contributing to a smaller area footprint, and reduced latency of critical paths. Notably, the experimentally obtained multi-heterojunction transistors constitute the first chip-scale platform that combines efficient polarity control as well as sizeand energy-efficient room-temperature negative differential resistance, providing an inherent component of emerging neuromorphic computing.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10608155","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10608155/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

A promising approach to advance electronics beyond static operations is to enhance state-ofthe- art systems by the functional diversification of transistors. Here, we experimentally demonstrate that an ultra-thin Ge channel implemented on a Si on insulator platform enables run-time switchable symmetric pand n-type field-effect transistor operability as well as the prominent feature of distinct room-temperature negative differential resistance. Temperature dependent bias spectroscopy is utilized to map electronic transport in these so called negative differential resistance mode reconfigurable transistors. Thereof, a profound understanding of the involved transport physics and electrostatic gating mechanisms is obtained and evaluated. Further, we show that a multi-gate negative differential resistance reconfigurable transistor can effectively replace a cascode of negative differential resistance devices, contributing to a smaller area footprint, and reduced latency of critical paths. Notably, the experimentally obtained multi-heterojunction transistors constitute the first chip-scale platform that combines efficient polarity control as well as sizeand energy-efficient room-temperature negative differential resistance, providing an inherent component of emerging neuromorphic computing.
通过负差分电阻实现功能多样化的可重构 Ge 晶体管
通过晶体管的功能多样化来增强最先进的系统,是推动电子技术超越静态操作的一种可行方法。在这里,我们通过实验证明,在绝缘体上的硅平台上实现的超薄 Ge 沟道可以实现运行时可切换的对称 pand n 型场效应晶体管的可操作性,以及明显的室温负差分电阻的突出特点。利用随温度变化的偏压光谱绘制了这些所谓负差分电阻模式可重构晶体管中的电子传输图。由此,我们获得并评估了对相关传输物理学和静电门控机制的深刻理解。此外,我们还表明,多栅极负差分电阻可重构晶体管可以有效取代负差分电阻器件级联,从而缩小面积占用,并降低关键路径的延迟。值得注意的是,实验中获得的多异质结晶体管构成了第一个芯片级平台,它结合了高效极性控制以及尺寸和能效的室温负差分电阻,为新兴的神经形态计算提供了一个固有的组件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信