{"title":"First‐Principles Study on the Spin Polarization of Single‐Walled Arsenic Nitride Nanotubes Decorated with C, O, Ge, and Se","authors":"Hanze Zhu, Mavlanjan Rahman","doi":"10.1002/pssb.202400249","DOIUrl":null,"url":null,"abstract":"This article utilizes first‐principles calculations within the density functional theory framework, employing spin generalized gradient approximation, to investigate the spin polarization of arsenic nitride nanotubes (AsNNTs). It is found that AsNNT does not exhibit spin polarization and has a bandgap of 1.05 eV, indicating that it is a semiconductor. Decoration with C, O, Ge, and Se on AsNNT induces spin polarization, resulting in magnetic moments of 1.001, 0.916, 0.770, and 0.967 μB, respectively. Meanwhile, all decorated configurations exhibit narrow bandgap semiconductor properties. Furthermore, the nonequilibrium Green's function method is used to study the spin‐polarized current of AsNNT decorated with C, O, Ge, and Se. It is found that AsNNTs decorated with C, Ge, and Se have relatively small spin current values. Notably, the Se‐decorated AsNNT exhibits the highest degree of spin polarization, with the spin current being nearly fully polarized.","PeriodicalId":20406,"journal":{"name":"Physica Status Solidi B-basic Solid State Physics","volume":"166 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica Status Solidi B-basic Solid State Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1002/pssb.202400249","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0
Abstract
This article utilizes first‐principles calculations within the density functional theory framework, employing spin generalized gradient approximation, to investigate the spin polarization of arsenic nitride nanotubes (AsNNTs). It is found that AsNNT does not exhibit spin polarization and has a bandgap of 1.05 eV, indicating that it is a semiconductor. Decoration with C, O, Ge, and Se on AsNNT induces spin polarization, resulting in magnetic moments of 1.001, 0.916, 0.770, and 0.967 μB, respectively. Meanwhile, all decorated configurations exhibit narrow bandgap semiconductor properties. Furthermore, the nonequilibrium Green's function method is used to study the spin‐polarized current of AsNNT decorated with C, O, Ge, and Se. It is found that AsNNTs decorated with C, Ge, and Se have relatively small spin current values. Notably, the Se‐decorated AsNNT exhibits the highest degree of spin polarization, with the spin current being nearly fully polarized.
期刊介绍:
physica status solidi is devoted to the thorough peer review and the rapid publication of new and important results in all fields of solid state and materials physics, from basic science to applications and devices. Being among the largest and most important international publications, the pss journals publish review articles, letters and original work as well as special issues and conference contributions.
physica status solidi b – basic solid state physics is devoted to topics such as theoretical and experimental investigations of the atomistic and electronic structure of solids in general, phase transitions, electronic and optical properties of low-dimensional, nano-scale, strongly correlated, or disordered systems, superconductivity, magnetism, ferroelectricity etc.