Intrinsic Ohmic Contacts and Polarity‐Tunable Schottky Barriers in M8X12–Graphene (M = Mo, W; X = S, Se) van der Waals Heterostructures for High‐Performance and Bipolar Device Applications
{"title":"Intrinsic Ohmic Contacts and Polarity‐Tunable Schottky Barriers in M8X12–Graphene (M = Mo, W; X = S, Se) van der Waals Heterostructures for High‐Performance and Bipolar Device Applications","authors":"Yuehua Xu, Qiang Zeng","doi":"10.1002/pssb.202400164","DOIUrl":null,"url":null,"abstract":"Considering the synthesis of novel 2D monolayers such as W<jats:sub>8</jats:sub>Se<jats:sub>1</jats:sub><jats:sub>2</jats:sub>, which are ideal for nanoelectronics, in this study, density‐functional theory is utilized to examine M<jats:sub>8</jats:sub>X<jats:sub>1</jats:sub><jats:sub>2</jats:sub>/G (M = Mo, W; X = S, Se) van der Waals heterostructures (vdWHs). Herein, the crucial role of intrinsic Ohmic contacts and Schottky barrier heights (SBH) at metal/semiconductor interfaces in these heterojunctions, which are vital for efficient current flow and minimal resistance, and their impact on high‐performance electronic and bipolar device applications are focused on. In these findings, it is revealed that W<jats:sub>8</jats:sub>Se<jats:sub>1</jats:sub><jats:sub>2</jats:sub>/G forms an Ohmic contact with a 75.4% tunneling probability, while Mo<jats:sub>8</jats:sub>S<jats:sub>1</jats:sub><jats:sub>2</jats:sub>/G, W<jats:sub>8</jats:sub>S<jats:sub>1</jats:sub><jats:sub>2</jats:sub>/G, and Mo<jats:sub>8</jats:sub>Se<jats:sub>1</jats:sub><jats:sub>2</jats:sub>/G develop n‐type Schottky contacts with remarkably low SBHs of 0.110, 0.136, and 0.064 eV, respectively. The adaptability of these Schottky barriers is demonstrated by modifying the interlayer distance or applying an electric field, leading to transitions from n‐type to p‐type contacts. Additionally, mechanical strain influences the contact type, offering valuable insights for future nanoelectronic and bipolar device technologies. This comprehensive analysis underlines the versatile electronic behavior of M<jats:sub>8</jats:sub>X<jats:sub>1</jats:sub><jats:sub>2</jats:sub>/G vdWHs, highlighting their potential in advancing nanoelectronic devices.","PeriodicalId":20406,"journal":{"name":"Physica Status Solidi B-basic Solid State Physics","volume":"19 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica Status Solidi B-basic Solid State Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1002/pssb.202400164","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0
Abstract
Considering the synthesis of novel 2D monolayers such as W8Se12, which are ideal for nanoelectronics, in this study, density‐functional theory is utilized to examine M8X12/G (M = Mo, W; X = S, Se) van der Waals heterostructures (vdWHs). Herein, the crucial role of intrinsic Ohmic contacts and Schottky barrier heights (SBH) at metal/semiconductor interfaces in these heterojunctions, which are vital for efficient current flow and minimal resistance, and their impact on high‐performance electronic and bipolar device applications are focused on. In these findings, it is revealed that W8Se12/G forms an Ohmic contact with a 75.4% tunneling probability, while Mo8S12/G, W8S12/G, and Mo8Se12/G develop n‐type Schottky contacts with remarkably low SBHs of 0.110, 0.136, and 0.064 eV, respectively. The adaptability of these Schottky barriers is demonstrated by modifying the interlayer distance or applying an electric field, leading to transitions from n‐type to p‐type contacts. Additionally, mechanical strain influences the contact type, offering valuable insights for future nanoelectronic and bipolar device technologies. This comprehensive analysis underlines the versatile electronic behavior of M8X12/G vdWHs, highlighting their potential in advancing nanoelectronic devices.
期刊介绍:
physica status solidi is devoted to the thorough peer review and the rapid publication of new and important results in all fields of solid state and materials physics, from basic science to applications and devices. Being among the largest and most important international publications, the pss journals publish review articles, letters and original work as well as special issues and conference contributions.
physica status solidi b – basic solid state physics is devoted to topics such as theoretical and experimental investigations of the atomistic and electronic structure of solids in general, phase transitions, electronic and optical properties of low-dimensional, nano-scale, strongly correlated, or disordered systems, superconductivity, magnetism, ferroelectricity etc.