{"title":"ALT-Lock: Logic and Timing Ambiguity-Based IP Obfuscation Against Reverse Engineering","authors":"Jonti Talukdar;Woo-Hyun Paik;Eduardo Ortega;Krishnendu Chakrabarty","doi":"10.1109/TVLSI.2024.3411033","DOIUrl":null,"url":null,"abstract":"We present a logic ambiguity-based intellectual property (IP) obfuscation method that replaces traditional key gates with key-controlled functionally ambiguous logic gates, called LGA gates. We also protect timing paths by developing timing-ambiguous sequential cells called TA cells. We call this locking scheme ambiguous logic and timing logic locking (referred to as ALT-Lock). ALT-Lock ensures a two-pronged system-level security scheme where the attacker is forced to unlock not only combinational logic obfuscation but also timing obfuscation. We show that a combination of logic and timing ambiguity (TA) provides security against oracle-guided attacks. This method is superior to other traditional IP protection schemes such as combinational or sequential locking as it guarantees security against both oracle-guided and oracle-free attacks, while ensuring low power, performance, and area (PPA) overhead.","PeriodicalId":13425,"journal":{"name":"IEEE Transactions on Very Large Scale Integration (VLSI) Systems","volume":"32 8","pages":"1535-1548"},"PeriodicalIF":2.8000,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Very Large Scale Integration (VLSI) Systems","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10559389/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
We present a logic ambiguity-based intellectual property (IP) obfuscation method that replaces traditional key gates with key-controlled functionally ambiguous logic gates, called LGA gates. We also protect timing paths by developing timing-ambiguous sequential cells called TA cells. We call this locking scheme ambiguous logic and timing logic locking (referred to as ALT-Lock). ALT-Lock ensures a two-pronged system-level security scheme where the attacker is forced to unlock not only combinational logic obfuscation but also timing obfuscation. We show that a combination of logic and timing ambiguity (TA) provides security against oracle-guided attacks. This method is superior to other traditional IP protection schemes such as combinational or sequential locking as it guarantees security against both oracle-guided and oracle-free attacks, while ensuring low power, performance, and area (PPA) overhead.
期刊介绍:
The IEEE Transactions on VLSI Systems is published as a monthly journal under the co-sponsorship of the IEEE Circuits and Systems Society, the IEEE Computer Society, and the IEEE Solid-State Circuits Society.
Design and realization of microelectronic systems using VLSI/ULSI technologies require close collaboration among scientists and engineers in the fields of systems architecture, logic and circuit design, chips and wafer fabrication, packaging, testing and systems applications. Generation of specifications, design and verification must be performed at all abstraction levels, including the system, register-transfer, logic, circuit, transistor and process levels.
To address this critical area through a common forum, the IEEE Transactions on VLSI Systems have been founded. The editorial board, consisting of international experts, invites original papers which emphasize and merit the novel systems integration aspects of microelectronic systems including interactions among systems design and partitioning, logic and memory design, digital and analog circuit design, layout synthesis, CAD tools, chips and wafer fabrication, testing and packaging, and systems level qualification. Thus, the coverage of these Transactions will focus on VLSI/ULSI microelectronic systems integration.