MSR Codes With Linear Field Size and Smallest Sub-Packetization for Any Number of Helper Nodes

IF 2.2 3区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS
Guodong Li;Ningning Wang;Sihuang Hu;Min Ye
{"title":"MSR Codes With Linear Field Size and Smallest Sub-Packetization for Any Number of Helper Nodes","authors":"Guodong Li;Ningning Wang;Sihuang Hu;Min Ye","doi":"10.1109/TIT.2024.3432822","DOIUrl":null,"url":null,"abstract":"An \n<inline-formula> <tex-math>$(n, k, \\ell)$ </tex-math></inline-formula>\n array code has k information coordinates and \n<inline-formula> <tex-math>$r = n - k$ </tex-math></inline-formula>\n parity coordinates, where each coordinate is a vector in \n<inline-formula> <tex-math>$\\mathbb {F}_{q}^{\\ell }$ </tex-math></inline-formula>\n for some finite field \n<inline-formula> <tex-math>$\\mathbb {F}_{q}$ </tex-math></inline-formula>\n. An \n<inline-formula> <tex-math>$(n, k, \\ell)$ </tex-math></inline-formula>\n MDS array code has the additional property that any k out of n coordinates suffice to recover the whole codeword. Dimakis et al. considered the problem of repairing the erasure of a single coordinate and proved a lower bound on the amount of data transmission that is needed for the repair. A minimum storage regenerating (MSR) code with repair degree d is an MDS array code that achieves this lower bound for the repair of any single erased coordinate from any d out of \n<inline-formula> <tex-math>$n-1$ </tex-math></inline-formula>\n remaining coordinates. An MSR code has the optimal access property if the amount of accessed data is the same as the amount of transmitted data in the repair procedure. The sub-packetization \n<inline-formula> <tex-math>$\\ell $ </tex-math></inline-formula>\n and the field size q are of paramount importance in MSR code constructions. For optimal-access MSR codes, Balaji et al. proved that \n<inline-formula> <tex-math>$\\ell \\geq s^{\\left \\lceil {{ n/s }}\\right \\rceil }$ </tex-math></inline-formula>\n, where \n<inline-formula> <tex-math>$s = d-k+1$ </tex-math></inline-formula>\n. Rawat et al. showed that this lower bound is attainable for all admissible values of d when the field size is exponential in n. After that, tremendous efforts have been devoted to reducing the field size. However, so far, reduction to a linear field size is only available for \n<inline-formula> <tex-math>$d\\in \\{k+1,k+2,k+3\\}$ </tex-math></inline-formula>\n and \n<inline-formula> <tex-math>$d=n-1$ </tex-math></inline-formula>\n. In this paper, we construct the first class of explicit optimal-access MSR codes with the smallest sub-packetization \n<inline-formula> <tex-math>$\\ell = s^{\\left \\lceil {{ n/s }}\\right \\rceil }$ </tex-math></inline-formula>\n for all d between \n<inline-formula> <tex-math>$k+1$ </tex-math></inline-formula>\n and \n<inline-formula> <tex-math>$n-1$ </tex-math></inline-formula>\n, resolving an open problem in the survey (Ramkumar et al., Foundations and Trends in Communications and Information Theory: Vol. 19: No. 4). We further propose another class of explicit MSR code constructions (not optimal-access) with an even smaller sub-packetization \n<inline-formula> <tex-math>$s^{\\left \\lceil {{ n/(s+1)}}\\right \\rceil }$ </tex-math></inline-formula>\n for all admissible values of d, making significant progress on another open problem in the survey. Previously, MSR codes with \n<inline-formula> <tex-math>$\\ell =s^{\\left \\lceil {{ n/(s+1)}}\\right \\rceil }$ </tex-math></inline-formula>\n and \n<inline-formula> <tex-math>$q=O(n)$ </tex-math></inline-formula>\n were only known for \n<inline-formula> <tex-math>$d=k+1$ </tex-math></inline-formula>\n and \n<inline-formula> <tex-math>$d=n-1$ </tex-math></inline-formula>\n. The key insight that enables a linear field size in our construction is to reduce \n<inline-formula> <tex-math>$\\binom {n}{r}$ </tex-math></inline-formula>\n global constraints of non-vanishing determinants to \n<inline-formula> <tex-math>$O_{s}(n)$ </tex-math></inline-formula>\n local ones, which is achieved by carefully designing the parity check matrices.","PeriodicalId":13494,"journal":{"name":"IEEE Transactions on Information Theory","volume":"70 11","pages":"7790-7806"},"PeriodicalIF":2.2000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Information Theory","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10606934/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

An $(n, k, \ell)$ array code has k information coordinates and $r = n - k$ parity coordinates, where each coordinate is a vector in $\mathbb {F}_{q}^{\ell }$ for some finite field $\mathbb {F}_{q}$ . An $(n, k, \ell)$ MDS array code has the additional property that any k out of n coordinates suffice to recover the whole codeword. Dimakis et al. considered the problem of repairing the erasure of a single coordinate and proved a lower bound on the amount of data transmission that is needed for the repair. A minimum storage regenerating (MSR) code with repair degree d is an MDS array code that achieves this lower bound for the repair of any single erased coordinate from any d out of $n-1$ remaining coordinates. An MSR code has the optimal access property if the amount of accessed data is the same as the amount of transmitted data in the repair procedure. The sub-packetization $\ell $ and the field size q are of paramount importance in MSR code constructions. For optimal-access MSR codes, Balaji et al. proved that $\ell \geq s^{\left \lceil {{ n/s }}\right \rceil }$ , where $s = d-k+1$ . Rawat et al. showed that this lower bound is attainable for all admissible values of d when the field size is exponential in n. After that, tremendous efforts have been devoted to reducing the field size. However, so far, reduction to a linear field size is only available for $d\in \{k+1,k+2,k+3\}$ and $d=n-1$ . In this paper, we construct the first class of explicit optimal-access MSR codes with the smallest sub-packetization $\ell = s^{\left \lceil {{ n/s }}\right \rceil }$ for all d between $k+1$ and $n-1$ , resolving an open problem in the survey (Ramkumar et al., Foundations and Trends in Communications and Information Theory: Vol. 19: No. 4). We further propose another class of explicit MSR code constructions (not optimal-access) with an even smaller sub-packetization $s^{\left \lceil {{ n/(s+1)}}\right \rceil }$ for all admissible values of d, making significant progress on another open problem in the survey. Previously, MSR codes with $\ell =s^{\left \lceil {{ n/(s+1)}}\right \rceil }$ and $q=O(n)$ were only known for $d=k+1$ and $d=n-1$ . The key insight that enables a linear field size in our construction is to reduce $\binom {n}{r}$ global constraints of non-vanishing determinants to $O_{s}(n)$ local ones, which is achieved by carefully designing the parity check matrices.
任意数量辅助节点的线性字段大小和最小子包化 MSR 编码
一个 $(n, k, \ell)$ 数组码有 k 个信息坐标和 $r = n - k$ 奇偶校验坐标,其中每个坐标都是某个有限域 $\mathbb {F}_{q}^\{ell }$ 中的一个向量。一个 $(n, k, \ell)$ MDS 阵列码还有一个特性,即 n 个坐标中的任何 k 个坐标都足以恢复整个码字。Dimakis 等人考虑了修复单个坐标擦除的问题,并证明了修复所需的数据传输量的下限。修复度为 d 的最小存储再生(MSR)码是一种 MDS 阵列码,它能从 $n-1$ 剩余坐标中的任意 d 个坐标中修复任何一个被擦除的坐标,从而达到这一下限。如果在修复过程中访问的数据量与传输的数据量相同,则 MSR 代码具有最优访问属性。子包化 $\ell $ 和字段大小 q 在 MSR 代码构造中至关重要。对于最优访问 MSR 码,Balaji 等人证明了 $\ell \geq s^{left \lceil {{ n/s }}\right \rceil }$ ,其中 $s = d-k+1$ 。拉瓦特等人的研究表明,当场的大小是 n 的指数值时,这个下界对于所有可接受的 d 值都是可以达到的。然而,到目前为止,只有在 $d\in \{k+1,k+2,k+3\}$ 和 $d=n-1$ 的情况下,才能减小到线性字段大小。 在本文中,我们构建了第一类显式优化访问 MSR 编码,其最小子包化为 $\ell = s^{left \lceil {{ n/s }}\right \rceil }$ ,适用于 $k+1$ 和 $n-1$ 之间的所有 d,解决了研究中的一个未决问题(Ramkumar et al、通信与信息论的基础与趋势》,第 19 卷:第 4 期):第 19 卷:第 4 期)。我们进一步提出了另一类显式 MSR 编码构造(非最优接入),其子包化 $s^{left \lceil {{ n/(s+1)}}\right \rceil }$ 适用于所有可允许的 d 值,在研究中的另一个开放问题上取得了重大进展。在此之前,只知道 $d=k+1$ 和 $d=n-1$ 的 MSR 代码具有 $\ell =s^{left \lceil {{ n/(s+1)}}right \rceil }$ 和 $q=O(n)$ 的特性。在我们的构造中,实现线性场大小的关键在于将$\binom {n}{r}$ 非消失行列式的全局约束减少到$O_{s}(n)$局部约束,这是通过精心设计奇偶校验矩阵实现的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Information Theory
IEEE Transactions on Information Theory 工程技术-工程:电子与电气
CiteScore
5.70
自引率
20.00%
发文量
514
审稿时长
12 months
期刊介绍: The IEEE Transactions on Information Theory is a journal that publishes theoretical and experimental papers concerned with the transmission, processing, and utilization of information. The boundaries of acceptable subject matter are intentionally not sharply delimited. Rather, it is hoped that as the focus of research activity changes, a flexible policy will permit this Transactions to follow suit. Current appropriate topics are best reflected by recent Tables of Contents; they are summarized in the titles of editorial areas that appear on the inside front cover.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信