{"title":"Generative innovations for paleography: enhancing character image synthesis through unconditional single image models","authors":"A. Aswathy, P. Uma Maheswari","doi":"10.1186/s40494-024-01373-4","DOIUrl":null,"url":null,"abstract":"<p>Data scarcity in paleographic image datasets poses a significant challenge to researchers and scholars in the field. Unlike modern printed texts, historical manuscripts and documents are often scarce and fragile, making them difficult to digitize and create comprehensive datasets. Recently many innovations have been arrived on single image generative models for natural images but none of them are focused on paleographic character images and other handwritten datasets. In paleographic images like stone inscription characters, maintaining exact shape and structure of character is important unlike natural images. In this paper we propose an unconditional single image generative model, CharGAN for isolated paleographic character images. In the proposed system, augmented images are generated from a single image using generative adversarial networks, while maintaining their structure. Specifically, an external augmentation inducer is used to create higher-level augmentations in the generated images. In addition, the input to the generator is replaced with dynamic sampling from a Gaussian mixture model to make changes to the low-level features. From our experimental results, we infer that these two enhancements make single-image generative models suitable not only for natural images, but also for paleographic character images and other handwritten character datasets, the AHCD dataset, and EMNIST, where the global structure is important. Both the qualitative and quantitative results show that our approach is effective and superior in single-image generative tasks, particularly in isolated character image generation.</p>","PeriodicalId":13109,"journal":{"name":"Heritage Science","volume":"81 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Heritage Science","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1186/s40494-024-01373-4","RegionNum":1,"RegionCategory":"艺术学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Data scarcity in paleographic image datasets poses a significant challenge to researchers and scholars in the field. Unlike modern printed texts, historical manuscripts and documents are often scarce and fragile, making them difficult to digitize and create comprehensive datasets. Recently many innovations have been arrived on single image generative models for natural images but none of them are focused on paleographic character images and other handwritten datasets. In paleographic images like stone inscription characters, maintaining exact shape and structure of character is important unlike natural images. In this paper we propose an unconditional single image generative model, CharGAN for isolated paleographic character images. In the proposed system, augmented images are generated from a single image using generative adversarial networks, while maintaining their structure. Specifically, an external augmentation inducer is used to create higher-level augmentations in the generated images. In addition, the input to the generator is replaced with dynamic sampling from a Gaussian mixture model to make changes to the low-level features. From our experimental results, we infer that these two enhancements make single-image generative models suitable not only for natural images, but also for paleographic character images and other handwritten character datasets, the AHCD dataset, and EMNIST, where the global structure is important. Both the qualitative and quantitative results show that our approach is effective and superior in single-image generative tasks, particularly in isolated character image generation.
期刊介绍:
Heritage Science is an open access journal publishing original peer-reviewed research covering:
Understanding of the manufacturing processes, provenances, and environmental contexts of material types, objects, and buildings, of cultural significance including their historical significance.
Understanding and prediction of physico-chemical and biological degradation processes of cultural artefacts, including climate change, and predictive heritage studies.
Development and application of analytical and imaging methods or equipments for non-invasive, non-destructive or portable analysis of artwork and objects of cultural significance to identify component materials, degradation products and deterioration markers.
Development and application of invasive and destructive methods for understanding the provenance of objects of cultural significance.
Development and critical assessment of treatment materials and methods for artwork and objects of cultural significance.
Development and application of statistical methods and algorithms for data analysis to further understanding of culturally significant objects.
Publication of reference and corpus datasets as supplementary information to the statistical and analytical studies above.
Description of novel technologies that can assist in the understanding of cultural heritage.