Caochenyu Zhou, Youqiang Dong, Miaole Hou, Yuhang Ji, Caihuan Wen
{"title":"MP-DGCNN for the semantic segmentation of Chinese ancient building point clouds","authors":"Caochenyu Zhou, Youqiang Dong, Miaole Hou, Yuhang Ji, Caihuan Wen","doi":"10.1186/s40494-024-01289-z","DOIUrl":null,"url":null,"abstract":"<p>Point cloud semantic segmentation is a key step in the scan-to-HBIM process. In order to reduce the information in the process of DGCNN, this paper proposes a Mix Pooling Dynamic Graph Convolutional Neural Network (MP-DGCNN) for the segmentation of ancient architecture point clouds. The proposed MP-DGCNN differs from DGCNN mainly in two aspects: (1) to more comprehensively characterize the local topological structure of points, the edge features are redefined, and distance and neighboring points are added to the original edge features; (2) based on a Multilayer Perceptron (MLP), an internal feature adjustment mechanism is established, and a learnable mix pooling operator is designed by fusing adaptive pooling, max pooling, average pooling, and aggregation pooling, to learn local graph features from the point cloud topology. To verify the proposed algorithm, experiments are conducted on the Qutan Temple point cloud dataset, and the results show that compared with PointNet, PointNet++, DGCNN, GACNet and LDGCNN, the MP-DGCNN segmentation network achieves the highest OA, mIOU and mAcc, reaching 90.19%,65.34% and 79.41%, respectively.</p>","PeriodicalId":13109,"journal":{"name":"Heritage Science","volume":"18 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Heritage Science","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1186/s40494-024-01289-z","RegionNum":1,"RegionCategory":"艺术学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Point cloud semantic segmentation is a key step in the scan-to-HBIM process. In order to reduce the information in the process of DGCNN, this paper proposes a Mix Pooling Dynamic Graph Convolutional Neural Network (MP-DGCNN) for the segmentation of ancient architecture point clouds. The proposed MP-DGCNN differs from DGCNN mainly in two aspects: (1) to more comprehensively characterize the local topological structure of points, the edge features are redefined, and distance and neighboring points are added to the original edge features; (2) based on a Multilayer Perceptron (MLP), an internal feature adjustment mechanism is established, and a learnable mix pooling operator is designed by fusing adaptive pooling, max pooling, average pooling, and aggregation pooling, to learn local graph features from the point cloud topology. To verify the proposed algorithm, experiments are conducted on the Qutan Temple point cloud dataset, and the results show that compared with PointNet, PointNet++, DGCNN, GACNet and LDGCNN, the MP-DGCNN segmentation network achieves the highest OA, mIOU and mAcc, reaching 90.19%,65.34% and 79.41%, respectively.
期刊介绍:
Heritage Science is an open access journal publishing original peer-reviewed research covering:
Understanding of the manufacturing processes, provenances, and environmental contexts of material types, objects, and buildings, of cultural significance including their historical significance.
Understanding and prediction of physico-chemical and biological degradation processes of cultural artefacts, including climate change, and predictive heritage studies.
Development and application of analytical and imaging methods or equipments for non-invasive, non-destructive or portable analysis of artwork and objects of cultural significance to identify component materials, degradation products and deterioration markers.
Development and application of invasive and destructive methods for understanding the provenance of objects of cultural significance.
Development and critical assessment of treatment materials and methods for artwork and objects of cultural significance.
Development and application of statistical methods and algorithms for data analysis to further understanding of culturally significant objects.
Publication of reference and corpus datasets as supplementary information to the statistical and analytical studies above.
Description of novel technologies that can assist in the understanding of cultural heritage.