Characterization technique for high-resolution mirror repositioning hexapod mechanism for space telescopes

IF 1.7 3区 工程技术 Q2 ENGINEERING, AEROSPACE
Gagan Agarwal, Naimesh R. Patel, Neeraj Mathur, Shaunak R. Joshi, Shri Hari Satheeshkumar
{"title":"Characterization technique for high-resolution mirror repositioning hexapod mechanism for space telescopes","authors":"Gagan Agarwal, Naimesh R. Patel, Neeraj Mathur, Shaunak R. Joshi, Shri Hari Satheeshkumar","doi":"10.1117/1.jatis.10.3.034002","DOIUrl":null,"url":null,"abstract":"The mirror repositioning system is one critical system in large-size deployable space telescopes that aids in correcting errors in mirror orientation once deployed. Stewart mechanism is employed for reorienting the mirror due to its potential for use in high-precision applications, and a high-range and high-accuracy Stewart platform for positioning the mirror was designed using dual-resolution actuators. System characterization is crucial for understanding, optimizing, and evaluating the performance of a system. It provides insight into a system’s behavior, strengths, weaknesses, and limitations, aiding in troubleshooting, design decisions, and quality assurance. Overall, it forms the foundation for ensuring the functionality, efficiency, and reliability of a system throughout its lifecycle. We discuss the techniques adopted for characterizing the mirror repositioning system and the methods employed for error reduction in the system.","PeriodicalId":54342,"journal":{"name":"Journal of Astronomical Telescopes Instruments and Systems","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Astronomical Telescopes Instruments and Systems","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1117/1.jatis.10.3.034002","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0

Abstract

The mirror repositioning system is one critical system in large-size deployable space telescopes that aids in correcting errors in mirror orientation once deployed. Stewart mechanism is employed for reorienting the mirror due to its potential for use in high-precision applications, and a high-range and high-accuracy Stewart platform for positioning the mirror was designed using dual-resolution actuators. System characterization is crucial for understanding, optimizing, and evaluating the performance of a system. It provides insight into a system’s behavior, strengths, weaknesses, and limitations, aiding in troubleshooting, design decisions, and quality assurance. Overall, it forms the foundation for ensuring the functionality, efficiency, and reliability of a system throughout its lifecycle. We discuss the techniques adopted for characterizing the mirror repositioning system and the methods employed for error reduction in the system.
用于空间望远镜的高分辨率镜面重新定位六爪机构的表征技术
反射镜重新定位系统是大型可部署空间望远镜中的一个关键系统,有助于在部署后纠正反射镜方位的误差。由于斯图尔特机构具有在高精度应用中使用的潜力,因此采用它来调整反射镜的方向,并利用双分辨率致动器设计了一个用于定位反射镜的高范围、高精度斯图尔特平台。系统表征对于了解、优化和评估系统性能至关重要。它有助于深入了解系统的行为、优势、劣势和局限性,有助于故障排除、设计决策和质量保证。总之,它为确保系统在整个生命周期内的功能、效率和可靠性奠定了基础。我们讨论了描述镜像重新定位系统特性所采用的技术,以及减少系统误差所采用的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.40
自引率
13.00%
发文量
119
期刊介绍: The Journal of Astronomical Telescopes, Instruments, and Systems publishes peer-reviewed papers reporting on original research in the development, testing, and application of telescopes, instrumentation, techniques, and systems for ground- and space-based astronomy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信