Gagan Agarwal, Naimesh R. Patel, Neeraj Mathur, Shaunak R. Joshi, Shri Hari Satheeshkumar
{"title":"Characterization technique for high-resolution mirror repositioning hexapod mechanism for space telescopes","authors":"Gagan Agarwal, Naimesh R. Patel, Neeraj Mathur, Shaunak R. Joshi, Shri Hari Satheeshkumar","doi":"10.1117/1.jatis.10.3.034002","DOIUrl":null,"url":null,"abstract":"The mirror repositioning system is one critical system in large-size deployable space telescopes that aids in correcting errors in mirror orientation once deployed. Stewart mechanism is employed for reorienting the mirror due to its potential for use in high-precision applications, and a high-range and high-accuracy Stewart platform for positioning the mirror was designed using dual-resolution actuators. System characterization is crucial for understanding, optimizing, and evaluating the performance of a system. It provides insight into a system’s behavior, strengths, weaknesses, and limitations, aiding in troubleshooting, design decisions, and quality assurance. Overall, it forms the foundation for ensuring the functionality, efficiency, and reliability of a system throughout its lifecycle. We discuss the techniques adopted for characterizing the mirror repositioning system and the methods employed for error reduction in the system.","PeriodicalId":54342,"journal":{"name":"Journal of Astronomical Telescopes Instruments and Systems","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Astronomical Telescopes Instruments and Systems","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1117/1.jatis.10.3.034002","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0
Abstract
The mirror repositioning system is one critical system in large-size deployable space telescopes that aids in correcting errors in mirror orientation once deployed. Stewart mechanism is employed for reorienting the mirror due to its potential for use in high-precision applications, and a high-range and high-accuracy Stewart platform for positioning the mirror was designed using dual-resolution actuators. System characterization is crucial for understanding, optimizing, and evaluating the performance of a system. It provides insight into a system’s behavior, strengths, weaknesses, and limitations, aiding in troubleshooting, design decisions, and quality assurance. Overall, it forms the foundation for ensuring the functionality, efficiency, and reliability of a system throughout its lifecycle. We discuss the techniques adopted for characterizing the mirror repositioning system and the methods employed for error reduction in the system.
期刊介绍:
The Journal of Astronomical Telescopes, Instruments, and Systems publishes peer-reviewed papers reporting on original research in the development, testing, and application of telescopes, instrumentation, techniques, and systems for ground- and space-based astronomy.