Bromelain decreases oxidative stress and Neuroinflammation and improves motor function in adult male rats with cerebellar Ataxia induced by 3-acetylpyridine
Reza Bahar , Maryam Jahani Chegeni , Azin Tahvildari , Mojtaba Sani , Yaser Khakpour , Maryam Hashemabady , Mastooreh Sagharichi , Nika Balaghirad , Mohammad Taghizadeh , Maryam Mehranpour , Amir-Hossein Bayat , Mobina Fathi , Kimia Vakili , Susan Roustaee , Seyedeh Naghmeh Nourirad , Mohammad Reza Babaei , Abbas Aliaghaei , Neda Eskandari , Hormoz Lahiji
{"title":"Bromelain decreases oxidative stress and Neuroinflammation and improves motor function in adult male rats with cerebellar Ataxia induced by 3-acetylpyridine","authors":"Reza Bahar , Maryam Jahani Chegeni , Azin Tahvildari , Mojtaba Sani , Yaser Khakpour , Maryam Hashemabady , Mastooreh Sagharichi , Nika Balaghirad , Mohammad Taghizadeh , Maryam Mehranpour , Amir-Hossein Bayat , Mobina Fathi , Kimia Vakili , Susan Roustaee , Seyedeh Naghmeh Nourirad , Mohammad Reza Babaei , Abbas Aliaghaei , Neda Eskandari , Hormoz Lahiji","doi":"10.1016/j.npep.2024.102455","DOIUrl":null,"url":null,"abstract":"<div><p>Bromelain is a plant-based molecule with antioxidant, antithrombotic, anticancer, and anti-inflammatory properties. Bromelain has been shown to reduce the release of inflammatory cytokines. This study aimed to determine whether bromelain can prevent ataxia in rats caused by 3-acetylpyridine (3-AP). Thirty-six albino rats were divided into the control, 3-AP, and 3-AP + Brom groups. In the 3-AP + Brom group, bromelain was injected intraperitoneally at 40 mg/kg daily for 30 days. Various techniques such as rotarod, electromyography (EMG), elevated plus maze, IHC, and Sholl analysis were used to evaluate the possible effects of bromelain on cerebellar neurons and glial cells. The results demonstrated significant improvements in most of the 3-AP + Brom, including motor coordination, neuromuscular response, anxiety, oxidative capacity, microgliosis, astrogliosis, cell death, and morphological variables compared to the 3-AP group. The mechanism of action of bromelain in restoring cerebellar ataxia needs further investigation, but it may be a candidate to help restore degeneration in animals with ataxia.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0143417924000544","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Bromelain is a plant-based molecule with antioxidant, antithrombotic, anticancer, and anti-inflammatory properties. Bromelain has been shown to reduce the release of inflammatory cytokines. This study aimed to determine whether bromelain can prevent ataxia in rats caused by 3-acetylpyridine (3-AP). Thirty-six albino rats were divided into the control, 3-AP, and 3-AP + Brom groups. In the 3-AP + Brom group, bromelain was injected intraperitoneally at 40 mg/kg daily for 30 days. Various techniques such as rotarod, electromyography (EMG), elevated plus maze, IHC, and Sholl analysis were used to evaluate the possible effects of bromelain on cerebellar neurons and glial cells. The results demonstrated significant improvements in most of the 3-AP + Brom, including motor coordination, neuromuscular response, anxiety, oxidative capacity, microgliosis, astrogliosis, cell death, and morphological variables compared to the 3-AP group. The mechanism of action of bromelain in restoring cerebellar ataxia needs further investigation, but it may be a candidate to help restore degeneration in animals with ataxia.