Generating 1O2 and CoIV=O through efficient peroxymonosulfate activation by ZnCo2O4 nanosheets for pollutant control

IF 9.5 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Xiaoke Zhang, Yangyang Zhang, Jiaqi Tian, Yadan Guo, Zhongkui Zhou, Zhongyi Liu, Zaiwang Zhao, Bin Liu, Jun Li
{"title":"Generating 1O2 and CoIV=O through efficient peroxymonosulfate activation by ZnCo2O4 nanosheets for pollutant control","authors":"Xiaoke Zhang,&nbsp;Yangyang Zhang,&nbsp;Jiaqi Tian,&nbsp;Yadan Guo,&nbsp;Zhongkui Zhou,&nbsp;Zhongyi Liu,&nbsp;Zaiwang Zhao,&nbsp;Bin Liu,&nbsp;Jun Li","doi":"10.1007/s12274-024-6836-6","DOIUrl":null,"url":null,"abstract":"<div><p>Heterogeneous advanced oxidation processes (AOPs) based on non-radical reactive species are considered as a powerful technology for wastewater purification due to their long half-lives and high adaptation in a wide pH range. Herein, we fabricate surface Co defect-rich spinel ZnCo<sub>2</sub>O<sub>4</sub> porous nanosheets, which can generate ≡Co<sup>IV</sup>=O and <sup>1</sup>O<sub>2</sub> over a wide pH range of 3.81–10.96 by the formation of amphoteric ≡Zn(OH)<sub>2</sub> in peroxymonosulfate (PMS) activation process. Density functional theory (DFT) calculations show Co defect-rich ZnCo<sub>2</sub>O<sub>4</sub> possesses much stronger adsorption ability and more electron transfer to PMS. Moreover, the adsorption mode changes from terminal oxygen Co–O–Co to Co–O, accelerating the polarization of adjacent oxygen, which is beneficial to the generation of ≡Co<sup>IV</sup>=O and <sup>1</sup>O<sub>2</sub>. Co defect-rich ZnCo<sub>2</sub>O<sub>4</sub> porous nanosheets exhibit highly active PMS activation activity and stability in p-nitrophenol (PNP) degradation, whose toxicity of degradation intermediates is significant reduction. The Co defect-rich ZnCo<sub>2</sub>O<sub>4</sub> nanosheet catalyst sponge/PMS system achieved stable and efficient removal of PNP with a removal efficiency higher than 93% over 10 h. This work highlights the development of functional catalyst and provides an atomic-level understanding into non-radical PMS activation process in wastewater treatment.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":713,"journal":{"name":"Nano Research","volume":"17 9","pages":"8025 - 8035"},"PeriodicalIF":9.5000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Research","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12274-024-6836-6","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Heterogeneous advanced oxidation processes (AOPs) based on non-radical reactive species are considered as a powerful technology for wastewater purification due to their long half-lives and high adaptation in a wide pH range. Herein, we fabricate surface Co defect-rich spinel ZnCo2O4 porous nanosheets, which can generate ≡CoIV=O and 1O2 over a wide pH range of 3.81–10.96 by the formation of amphoteric ≡Zn(OH)2 in peroxymonosulfate (PMS) activation process. Density functional theory (DFT) calculations show Co defect-rich ZnCo2O4 possesses much stronger adsorption ability and more electron transfer to PMS. Moreover, the adsorption mode changes from terminal oxygen Co–O–Co to Co–O, accelerating the polarization of adjacent oxygen, which is beneficial to the generation of ≡CoIV=O and 1O2. Co defect-rich ZnCo2O4 porous nanosheets exhibit highly active PMS activation activity and stability in p-nitrophenol (PNP) degradation, whose toxicity of degradation intermediates is significant reduction. The Co defect-rich ZnCo2O4 nanosheet catalyst sponge/PMS system achieved stable and efficient removal of PNP with a removal efficiency higher than 93% over 10 h. This work highlights the development of functional catalyst and provides an atomic-level understanding into non-radical PMS activation process in wastewater treatment.

Abstract Image

ZnCo2O4 纳米片通过高效过硫酸盐活化生成 1O2 和 CoIV=O 以控制污染物
基于非自由基活性物种的异质高级氧化过程(AOPs)因其半衰期长、在宽 pH 值范围内适应性强而被视为一种强大的废水净化技术。在此,我们制备了表面富含 Co 缺陷的尖晶石 ZnCo2O4 多孔纳米片,在过一硫酸盐(PMS)活化过程中形成两性≡Zn(OH)2,从而在 3.81-10.96 的宽 pH 值范围内生成≡CoIV=O 和 1O2。密度泛函理论(DFT)计算表明,富含钴缺陷的 ZnCo2O4 对 PMS 具有更强的吸附能力和更多的电子转移。此外,吸附模式从末端氧 Co-O-Co 变为 Co-O,加速了相邻氧的极化,有利于生成≡CoIV=O 和 1O2。富含 Co 缺陷的 ZnCo2O4 多孔纳米片在对硝基苯酚(PNP)降解中表现出高活性的 PMS 活化活性和稳定性,其降解中间产物的毒性显著降低。富含钴缺陷的 ZnCo2O4 纳米片催化剂海绵/PMS 系统实现了对对硝基苯酚的稳定高效去除,10 小时去除率超过 93%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nano Research
Nano Research 化学-材料科学:综合
CiteScore
14.30
自引率
11.10%
发文量
2574
审稿时长
1.7 months
期刊介绍: Nano Research is a peer-reviewed, international and interdisciplinary research journal that focuses on all aspects of nanoscience and nanotechnology. It solicits submissions in various topical areas, from basic aspects of nanoscale materials to practical applications. The journal publishes articles on synthesis, characterization, and manipulation of nanomaterials; nanoscale physics, electrical transport, and quantum physics; scanning probe microscopy and spectroscopy; nanofluidics; nanosensors; nanoelectronics and molecular electronics; nano-optics, nano-optoelectronics, and nano-photonics; nanomagnetics; nanobiotechnology and nanomedicine; and nanoscale modeling and simulations. Nano Research offers readers a combination of authoritative and comprehensive Reviews, original cutting-edge research in Communication and Full Paper formats. The journal also prioritizes rapid review to ensure prompt publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信