Experimental and theoretical investigation of sulfur-doped g-C3N4 nanosheets/FeCo2O4 nanorods S-scheme heterojunction for photocatalytic H2 evolution

IF 9.5 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Haitao Wang, Lianglang Yu, Jiahe Peng, Jing Zou, Weiping Gong, Jizhou Jiang
{"title":"Experimental and theoretical investigation of sulfur-doped g-C3N4 nanosheets/FeCo2O4 nanorods S-scheme heterojunction for photocatalytic H2 evolution","authors":"Haitao Wang,&nbsp;Lianglang Yu,&nbsp;Jiahe Peng,&nbsp;Jing Zou,&nbsp;Weiping Gong,&nbsp;Jizhou Jiang","doi":"10.1007/s12274-024-6823-y","DOIUrl":null,"url":null,"abstract":"<div><p>g-C<sub>3</sub>N<sub>4</sub> emerges as a promising metal-free semiconductor photocatalyst due to its cost-effectiveness, facile synthesis, suitable visible light response, and robust thermal stability. However, its practical application in photocatalytic hydrogen evolution reaction (HER) is impeded by rapid carrier recombination and limited light absorption capacity. In this study, we successfully develop a novel g-C<sub>3</sub>N<sub>4</sub>-based step-scheme (S-scheme) heterojunction comprising two-dimensional (2D) sulfur-doped g-C<sub>3</sub>N<sub>4</sub> nanosheets (SCN) and one-dimensional (1D) FeCo<sub>2</sub>O<sub>4</sub> nanorods (FeCo<sub>2</sub>O<sub>4</sub>), demonstrating enhanced photocatalytic HER activity. The engineered SCN/FeCo<sub>2</sub>O<sub>4</sub> S-scheme heterojunction features a well-defined 2D/1D heterogeneous interface facilitating directed interfacial electron transfer from FeCo<sub>2</sub>O<sub>4</sub> to SCN, driven by the lower Fermi level of SCN compared to FeCo<sub>2</sub>O<sub>4</sub>. This establishment of electron-interacting 2D/1D S-scheme heterojunction not only facilitates the separation and migration of photogenerated carriers, but also enhances visible-light absorption and mitigates electron-hole pair recombination. Band structure analysis and density functional theory calculations corroborate that the carrier migration in the SCN/FeCo<sub>2</sub>O<sub>4</sub> photocatalyst adheres to a typical S-scheme heterojunction mechanism, effectively retaining highly reactive photogenerated electrons. Consequently, the optimized SCN/FeCo<sub>2</sub>O<sub>4</sub> heterojunction exhibits a substantially high hydrogen production rate of 6303.5 µmol·g<sup>−1</sup>·h<sup>−1</sup> under visible light excitation, which is 2.4 times higher than that of the SCN. Furthermore, the conjecture of the S-scheme mechanism is confirmed by <i>in situ</i> XPS measurement. The 2D/1D S-scheme heterojunction established in this study provides valuable insights into the development of high-efficiency carbon-based catalysts for diverse energy conversion and storage applications.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":713,"journal":{"name":"Nano Research","volume":"17 9","pages":"8007 - 8016"},"PeriodicalIF":9.5000,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Research","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12274-024-6823-y","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

g-C3N4 emerges as a promising metal-free semiconductor photocatalyst due to its cost-effectiveness, facile synthesis, suitable visible light response, and robust thermal stability. However, its practical application in photocatalytic hydrogen evolution reaction (HER) is impeded by rapid carrier recombination and limited light absorption capacity. In this study, we successfully develop a novel g-C3N4-based step-scheme (S-scheme) heterojunction comprising two-dimensional (2D) sulfur-doped g-C3N4 nanosheets (SCN) and one-dimensional (1D) FeCo2O4 nanorods (FeCo2O4), demonstrating enhanced photocatalytic HER activity. The engineered SCN/FeCo2O4 S-scheme heterojunction features a well-defined 2D/1D heterogeneous interface facilitating directed interfacial electron transfer from FeCo2O4 to SCN, driven by the lower Fermi level of SCN compared to FeCo2O4. This establishment of electron-interacting 2D/1D S-scheme heterojunction not only facilitates the separation and migration of photogenerated carriers, but also enhances visible-light absorption and mitigates electron-hole pair recombination. Band structure analysis and density functional theory calculations corroborate that the carrier migration in the SCN/FeCo2O4 photocatalyst adheres to a typical S-scheme heterojunction mechanism, effectively retaining highly reactive photogenerated electrons. Consequently, the optimized SCN/FeCo2O4 heterojunction exhibits a substantially high hydrogen production rate of 6303.5 µmol·g−1·h−1 under visible light excitation, which is 2.4 times higher than that of the SCN. Furthermore, the conjecture of the S-scheme mechanism is confirmed by in situ XPS measurement. The 2D/1D S-scheme heterojunction established in this study provides valuable insights into the development of high-efficiency carbon-based catalysts for diverse energy conversion and storage applications.

Abstract Image

用于光催化 H2 演化的掺硫 g-C3N4 纳米片/FeCo2O4 纳米棒 S 型异质结的实验和理论研究
g-C3N4 因其成本效益高、易于合成、合适的可见光响应和强大的热稳定性而成为一种前景广阔的无金属半导体光催化剂。然而,载流子的快速重组和有限的光吸收能力阻碍了它在光催化氢进化反应(HER)中的实际应用。在本研究中,我们成功开发了一种新型基于 g-C3N4 的阶梯式(S-scheme)异质结,该异质结由二维(2D)掺硫 g-C3N4 纳米片(SCN)和一维(1D)FeCo2O4 纳米棒(FeCo2O4)组成,显示出更强的光催化氢进化反应活性。与铁钴氧化物相比,SCN 的费米级更低,这就使得工程化的 SCN/FeCo2O4 S 型异质结具有一个定义明确的二维/一维异质界面,从而促进了铁钴氧化物向 SCN 的定向界面电子转移。这种建立电子相互作用的二维/一维 S 型异质结不仅有利于光生载流子的分离和迁移,而且还能增强可见光吸收和缓解电子-空穴对重组。带状结构分析和密度泛函理论计算证实,SCN/FeCo2O4 光催化剂中的载流子迁移遵循典型的 S 型异质结机制,可有效保留高活性光生电子。因此,优化的 SCN/FeCo2O4 异质结在可见光激发下的产氢率高达 6303.5 µmol-g-1-h-1,是 SCN 的 2.4 倍。此外,原位 XPS 测量也证实了 S-梯度机制的猜想。本研究建立的二维/一维 S-梯度异质结为开发高效碳基催化剂提供了宝贵的见解,可用于多种能量转换和储存应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nano Research
Nano Research 化学-材料科学:综合
CiteScore
14.30
自引率
11.10%
发文量
2574
审稿时长
1.7 months
期刊介绍: Nano Research is a peer-reviewed, international and interdisciplinary research journal that focuses on all aspects of nanoscience and nanotechnology. It solicits submissions in various topical areas, from basic aspects of nanoscale materials to practical applications. The journal publishes articles on synthesis, characterization, and manipulation of nanomaterials; nanoscale physics, electrical transport, and quantum physics; scanning probe microscopy and spectroscopy; nanofluidics; nanosensors; nanoelectronics and molecular electronics; nano-optics, nano-optoelectronics, and nano-photonics; nanomagnetics; nanobiotechnology and nanomedicine; and nanoscale modeling and simulations. Nano Research offers readers a combination of authoritative and comprehensive Reviews, original cutting-edge research in Communication and Full Paper formats. The journal also prioritizes rapid review to ensure prompt publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信