{"title":"An equilibrium optimizer-based parameter independent fuzzy kNN classifier for classification of medical datasets","authors":"Amukta Malyada Vommi, Tirumala Krishna Battula","doi":"10.1007/s00500-024-09941-3","DOIUrl":null,"url":null,"abstract":"<p>The kNN classifier is the most popular, supervised machine-learning technique, but the main disadvantage of this algorithm is that it has restricted access to the class distributions in a training point set and treats all the instances equally. In kNN classification, fuzzy sets are used to obtain the membership degrees of each point to the classes known as fuzzy kNN (FkNN) classification. Although the FkNN classifier enhances the performance of the kNN, it does not consider the effect of noisy and redundant instances, which makes it ineffective. Moreover, the performance of kNN is dependent on the value of k (number of nearest neighbours). Considering these issues, we present a novel algorithm that simultaneously tunes the class-dependent feature weights and k value using an effective meta-heuristic algorithm, the Enhanced Equilibrium Optimization technique. Several experiments have been conducted on different biomedical datasets, and the proposed approach has outperformed the other standard classifiers in terms of accuracy.</p>","PeriodicalId":22039,"journal":{"name":"Soft Computing","volume":"1 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soft Computing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s00500-024-09941-3","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
The kNN classifier is the most popular, supervised machine-learning technique, but the main disadvantage of this algorithm is that it has restricted access to the class distributions in a training point set and treats all the instances equally. In kNN classification, fuzzy sets are used to obtain the membership degrees of each point to the classes known as fuzzy kNN (FkNN) classification. Although the FkNN classifier enhances the performance of the kNN, it does not consider the effect of noisy and redundant instances, which makes it ineffective. Moreover, the performance of kNN is dependent on the value of k (number of nearest neighbours). Considering these issues, we present a novel algorithm that simultaneously tunes the class-dependent feature weights and k value using an effective meta-heuristic algorithm, the Enhanced Equilibrium Optimization technique. Several experiments have been conducted on different biomedical datasets, and the proposed approach has outperformed the other standard classifiers in terms of accuracy.
期刊介绍:
Soft Computing is dedicated to system solutions based on soft computing techniques. It provides rapid dissemination of important results in soft computing technologies, a fusion of research in evolutionary algorithms and genetic programming, neural science and neural net systems, fuzzy set theory and fuzzy systems, and chaos theory and chaotic systems.
Soft Computing encourages the integration of soft computing techniques and tools into both everyday and advanced applications. By linking the ideas and techniques of soft computing with other disciplines, the journal serves as a unifying platform that fosters comparisons, extensions, and new applications. As a result, the journal is an international forum for all scientists and engineers engaged in research and development in this fast growing field.