Novel adaptive robust L1‐based controllers for teleoperation systems with uncertainties and time delays

IF 4.2 2区 计算机科学 Q2 ROBOTICS
Behnam Yazdankhoo, Mohammad Reza Ha'iri Yazdi, Farshid Najafi, Borhan Beigzadeh
{"title":"Novel adaptive robust L1‐based controllers for teleoperation systems with uncertainties and time delays","authors":"Behnam Yazdankhoo, Mohammad Reza Ha'iri Yazdi, Farshid Najafi, Borhan Beigzadeh","doi":"10.1002/rob.22396","DOIUrl":null,"url":null,"abstract":"Despite various proposed control schemes for uncertain bilateral teleoperation systems under time delays, optimally restricting the system's overshoot has remained an overlooked issue in this realm. For this aim, we propose two novel control architectures based on robust L<jats:sub>1</jats:sub> theory, entitled <jats:italic>position‐based adaptive L</jats:italic><jats:sub><jats:italic>1</jats:italic></jats:sub> <jats:italic>controller</jats:italic> and <jats:italic>transparent adaptive L</jats:italic><jats:sub><jats:italic>1</jats:italic></jats:sub> <jats:italic>controller</jats:italic>, with the former focusing on position synchronization and the latter concerning system transparency. Since developing L<jats:sub>1</jats:sub>‐based controllers for nonlinear telerobotic systems encompassing uncertainty and round‐trip delays puts significant theoretical challenges forward, the main contribution of this paper lies in advancing L<jats:sub>1</jats:sub> theory within the field of delayed teleoperation control. To formulate the theories, the asymptotic stability of the closed‐loop system for each controller is first proved utilizing the Lyapunov method, followed by transformation, along with the L<jats:sub>1</jats:sub> performance criterion, into linear matrix inequalities. Ultimately, the control gains are attained by solving a convex optimization problem. The superiority of the designed controllers over a benchmark transparent controller for teleoperators is demonstrated via simulation. Furthermore, experimental tests on a two‐degrees‐of‐freedom nonlinear telerobotic system validate the efficient performance of the proposed controllers.","PeriodicalId":192,"journal":{"name":"Journal of Field Robotics","volume":"42 1","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Field Robotics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1002/rob.22396","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Despite various proposed control schemes for uncertain bilateral teleoperation systems under time delays, optimally restricting the system's overshoot has remained an overlooked issue in this realm. For this aim, we propose two novel control architectures based on robust L1 theory, entitled position‐based adaptive L1 controller and transparent adaptive L1 controller, with the former focusing on position synchronization and the latter concerning system transparency. Since developing L1‐based controllers for nonlinear telerobotic systems encompassing uncertainty and round‐trip delays puts significant theoretical challenges forward, the main contribution of this paper lies in advancing L1 theory within the field of delayed teleoperation control. To formulate the theories, the asymptotic stability of the closed‐loop system for each controller is first proved utilizing the Lyapunov method, followed by transformation, along with the L1 performance criterion, into linear matrix inequalities. Ultimately, the control gains are attained by solving a convex optimization problem. The superiority of the designed controllers over a benchmark transparent controller for teleoperators is demonstrated via simulation. Furthermore, experimental tests on a two‐degrees‐of‐freedom nonlinear telerobotic system validate the efficient performance of the proposed controllers.
用于具有不确定性和时间延迟的远程操纵系统的基于 L1 的新型自适应鲁棒控制器
尽管针对时间延迟条件下的不确定双边远程操纵系统提出了各种控制方案,但优化限制系统超调仍是这一领域被忽视的问题。为此,我们提出了两种基于鲁棒 L1 理论的新型控制架构,即基于位置的自适应 L1 控制器和透明自适应 L1 控制器,前者侧重于位置同步,后者则涉及系统透明度。由于为包含不确定性和往返延迟的非线性远程机器人系统开发基于 L1 的控制器是一项重大的理论挑战,本文的主要贡献在于在延迟远程操作控制领域推进 L1 理论。为了阐述这些理论,首先利用 Lyapunov 方法证明了每个控制器闭环系统的渐近稳定性,然后将其与 L1 性能标准一起转化为线性矩阵不等式。最后,通过解决凸优化问题获得控制增益。通过仿真证明了所设计的控制器优于用于远程操作器的基准透明控制器。此外,在一个两自由度非线性远程机器人系统上进行的实验测试也验证了所提控制器的高效性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Field Robotics
Journal of Field Robotics 工程技术-机器人学
CiteScore
15.00
自引率
3.60%
发文量
80
审稿时长
6 months
期刊介绍: The Journal of Field Robotics seeks to promote scholarly publications dealing with the fundamentals of robotics in unstructured and dynamic environments. The Journal focuses on experimental robotics and encourages publication of work that has both theoretical and practical significance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信