Manoj Kumar, Keshav Malhotra, Nishu, Rajat Syal, Shailendra Gupta, Gyaneshwar Sharma, Arun Kumar Singh and Sanjeev Kumar
{"title":"Optimization of energy storage and electrocaloric performance in Pb(Zr,Ti)O3 via A-Site La and Bi Co-doping","authors":"Manoj Kumar, Keshav Malhotra, Nishu, Rajat Syal, Shailendra Gupta, Gyaneshwar Sharma, Arun Kumar Singh and Sanjeev Kumar","doi":"10.1088/1361-665x/ad5d33","DOIUrl":null,"url":null,"abstract":"Lead-based ferroelectrics are one of the most fascinating candidates in the field of state-of-the-art electronic technology. Their intriguing properties are further enriched via the realization of morphotropic phase boundaries. Moreover, the A-site chemical substitution provides insight into the emergence of various exotic phases. Here, we employ co-doping of La3+ and Bi3+ at the A-site of Pb(Zr,Ti)O3 (PZT) ferroelectric to broaden the practical perspective of relaxor systems. Here, we emphasize that the A-site co-doping approach introduces technologically appealing amendments in the well-established temperature composition phase diagram of the PZT system. La3+ and Bi3+ doping favors the evolution of a novel response to thermal and field fluctuations. The maximum values of are found to be ∼0.157, 0.118 and 0.176 J (kg·K)−1 for and , respectively. We employ the electrocaloric characteristics and Arrott plot as probing tools. The observation of a negative electrocaloric effect and the systematic reversal of Arrott lines, followed by a poling effect on the dielectric constant, reveals the emergence of ergodic phase as a novel phase. This further reveals that the Bi doping approach leads to the emergence of exotic characteristics in the chemically modified PZT system. The maximum observed recoverable energy for the composition for x = 0.01 is 0.0479 J cm−3 at a temperature of 388 K.","PeriodicalId":21656,"journal":{"name":"Smart Materials and Structures","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart Materials and Structures","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/1361-665x/ad5d33","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0
Abstract
Lead-based ferroelectrics are one of the most fascinating candidates in the field of state-of-the-art electronic technology. Their intriguing properties are further enriched via the realization of morphotropic phase boundaries. Moreover, the A-site chemical substitution provides insight into the emergence of various exotic phases. Here, we employ co-doping of La3+ and Bi3+ at the A-site of Pb(Zr,Ti)O3 (PZT) ferroelectric to broaden the practical perspective of relaxor systems. Here, we emphasize that the A-site co-doping approach introduces technologically appealing amendments in the well-established temperature composition phase diagram of the PZT system. La3+ and Bi3+ doping favors the evolution of a novel response to thermal and field fluctuations. The maximum values of are found to be ∼0.157, 0.118 and 0.176 J (kg·K)−1 for and , respectively. We employ the electrocaloric characteristics and Arrott plot as probing tools. The observation of a negative electrocaloric effect and the systematic reversal of Arrott lines, followed by a poling effect on the dielectric constant, reveals the emergence of ergodic phase as a novel phase. This further reveals that the Bi doping approach leads to the emergence of exotic characteristics in the chemically modified PZT system. The maximum observed recoverable energy for the composition for x = 0.01 is 0.0479 J cm−3 at a temperature of 388 K.
期刊介绍:
Smart Materials and Structures (SMS) is a multi-disciplinary engineering journal that explores the creation and utilization of novel forms of transduction. It is a leading journal in the area of smart materials and structures, publishing the most important results from different regions of the world, largely from Asia, Europe and North America. The results may be as disparate as the development of new materials and active composite systems, derived using theoretical predictions to complex structural systems, which generate new capabilities by incorporating enabling new smart material transducers. The theoretical predictions are usually accompanied with experimental verification, characterizing the performance of new structures and devices. These systems are examined from the nanoscale to the macroscopic. SMS has a Board of Associate Editors who are specialists in a multitude of areas, ensuring that reviews are fast, fair and performed by experts in all sub-disciplines of smart materials, systems and structures.
A smart material is defined as any material that is capable of being controlled such that its response and properties change under a stimulus. A smart structure or system is capable of reacting to stimuli or the environment in a prescribed manner. SMS is committed to understanding, expanding and dissemination of knowledge in this subject matter.