Experimental investigation on magnetorheological shear thickening polishing characteristics for SiC substrate

IF 5.1 2区 材料科学 Q1 MATERIALS SCIENCE, CERAMICS
{"title":"Experimental investigation on magnetorheological shear thickening polishing characteristics for SiC substrate","authors":"","doi":"10.1016/j.ceramint.2024.07.392","DOIUrl":null,"url":null,"abstract":"<p>Silicon carbide (SiC) substrates are widely used in semiconductor and photoelectric applications due to excellent electrical and chemical properties. However, due to its inherent hard-brittle properties and chemical inertness, traditional polishing processes are facing great challenges to obtain excellent surface and subsurface quality for the SiC substrates. In this work, a novel polishing process i.e. magnetorheological shear thickening polishing (MRSTP) was proposed to explore the feasibility for the polishing of the SiC substrates. The MRSTP experiments were conducted using multiple magnetic-pole-coupled tools. The magnetic field characteristics of the polishing area were investigated via finite element simulation and actual measurements. The magnetic-pole-coupled tool was capable of generating high magnetic induction strength in the polishing area. The MRSTP medium was designed and prepared. The media were formed magnetic brushes by the excited magnetic field. The MRSTP experiments were conducted to investigate the effects of processing parameters on the polished surface roughness. The optimum process parameters were determined as the spindle rotational speed of 700 rpm, the feed rate of 600 mm/min, the work gap of 0.5 mm and MRSTP media CIPs particle size of 100 μm. The surface roughness of the workpieces was improved from initial 1.414 μm to 27.6 nm. It is verified that the MRSTP is the feasible ultraprecision polishing process for the SiC substrates.</p>","PeriodicalId":267,"journal":{"name":"Ceramics International","volume":null,"pages":null},"PeriodicalIF":5.1000,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ceramics International","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.ceramint.2024.07.392","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0

Abstract

Silicon carbide (SiC) substrates are widely used in semiconductor and photoelectric applications due to excellent electrical and chemical properties. However, due to its inherent hard-brittle properties and chemical inertness, traditional polishing processes are facing great challenges to obtain excellent surface and subsurface quality for the SiC substrates. In this work, a novel polishing process i.e. magnetorheological shear thickening polishing (MRSTP) was proposed to explore the feasibility for the polishing of the SiC substrates. The MRSTP experiments were conducted using multiple magnetic-pole-coupled tools. The magnetic field characteristics of the polishing area were investigated via finite element simulation and actual measurements. The magnetic-pole-coupled tool was capable of generating high magnetic induction strength in the polishing area. The MRSTP medium was designed and prepared. The media were formed magnetic brushes by the excited magnetic field. The MRSTP experiments were conducted to investigate the effects of processing parameters on the polished surface roughness. The optimum process parameters were determined as the spindle rotational speed of 700 rpm, the feed rate of 600 mm/min, the work gap of 0.5 mm and MRSTP media CIPs particle size of 100 μm. The surface roughness of the workpieces was improved from initial 1.414 μm to 27.6 nm. It is verified that the MRSTP is the feasible ultraprecision polishing process for the SiC substrates.

对碳化硅基板磁流变剪切增厚抛光特性的实验研究
碳化硅(SiC)基板具有优异的电气和化学特性,被广泛应用于半导体和光电领域。然而,由于碳化硅固有的硬脆特性和化学惰性,传统的抛光工艺在获得碳化硅基底的优异表面和次表面质量方面面临着巨大挑战。本研究提出了一种新型抛光工艺,即磁流变剪切增厚抛光(MRSTP),以探索 SiC 基底抛光的可行性。MRSTP 实验使用多个磁极耦合工具进行。通过有限元模拟和实际测量研究了抛光区域的磁场特性。磁极耦合工具能够在抛光区域产生高磁感应强度。设计并制备了 MRSTP 介质。介质在激励磁场的作用下形成磁刷。MRSTP 实验旨在研究加工参数对抛光表面粗糙度的影响。确定的最佳工艺参数为:主轴转速 700 rpm,进给速度 600 mm/min,工作间隙 0.5 mm,MRSTP 介质 CIP 粒径 100 μm。工件的表面粗糙度从最初的 1.414 μm 提高到 27.6 nm。验证了 MRSTP 是适用于 SiC 基材的可行超精密抛光工艺。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Ceramics International
Ceramics International 工程技术-材料科学:硅酸盐
CiteScore
9.40
自引率
15.40%
发文量
4558
审稿时长
25 days
期刊介绍: Ceramics International covers the science of advanced ceramic materials. The journal encourages contributions that demonstrate how an understanding of the basic chemical and physical phenomena may direct materials design and stimulate ideas for new or improved processing techniques, in order to obtain materials with desired structural features and properties. Ceramics International covers oxide and non-oxide ceramics, functional glasses, glass ceramics, amorphous inorganic non-metallic materials (and their combinations with metal and organic materials), in the form of particulates, dense or porous bodies, thin/thick films and laminated, graded and composite structures. Process related topics such as ceramic-ceramic joints or joining ceramics with dissimilar materials, as well as surface finishing and conditioning are also covered. Besides traditional processing techniques, manufacturing routes of interest include innovative procedures benefiting from externally applied stresses, electromagnetic fields and energetic beams, as well as top-down and self-assembly nanotechnology approaches. In addition, the journal welcomes submissions on bio-inspired and bio-enabled materials designs, experimentally validated multi scale modelling and simulation for materials design, and the use of the most advanced chemical and physical characterization techniques of structure, properties and behaviour. Technologically relevant low-dimensional systems are a particular focus of Ceramics International. These include 0, 1 and 2-D nanomaterials (also covering CNTs, graphene and related materials, and diamond-like carbons), their nanocomposites, as well as nano-hybrids and hierarchical multifunctional nanostructures that might integrate molecular, biological and electronic components.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信