Performance analysis of a new multifunctional aircraft environmental control system under variable operating conditions

IF 3.2 4区 工程技术 Q3 ENERGY & FUELS
Zhen Shangguan, Xinyi Wei, Hao Peng, Qing Cheng
{"title":"Performance analysis of a new multifunctional aircraft environmental control system under variable operating conditions","authors":"Zhen Shangguan,&nbsp;Xinyi Wei,&nbsp;Hao Peng,&nbsp;Qing Cheng","doi":"10.1007/s12053-024-10245-6","DOIUrl":null,"url":null,"abstract":"<div><p>As long-distance flights increase, the widespread use of electric heating for hot water in domestic civil aircraft will pose a challenge to the aircraft's energy systems. Moreover, the aircraft environmental control system operates under variable environmental conditions during aircraft take-off, leading to changes in system performance and outlet parameters. In this paper, mathematical models of the new aircraft environmental control system are established during aircraft take-off, and the main factors affecting the performance of systems are discussed. Results show that hot water with an average temperature of 61 °C can be provided by the new system during aircraft take-off. In the new multi-functional system, the bleed air supply volume during aircraft take-off is less than that of the conventional system, and the system energy loss is also less. When the aircraft just takes off, the condenser accounts for the most significant portion of the system exergy loss. However, the exergy loss in the secondary heat exchanger is the largest, as the aircraft altitude increases. Compared with the conventional system, the exergy efficiency of the new system is 8.85% higher at a 4-5 km level flight, and it’s 3.21% higher at a 9-10 km level flight.</p></div>","PeriodicalId":537,"journal":{"name":"Energy Efficiency","volume":"17 6","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Efficiency","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s12053-024-10245-6","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

As long-distance flights increase, the widespread use of electric heating for hot water in domestic civil aircraft will pose a challenge to the aircraft's energy systems. Moreover, the aircraft environmental control system operates under variable environmental conditions during aircraft take-off, leading to changes in system performance and outlet parameters. In this paper, mathematical models of the new aircraft environmental control system are established during aircraft take-off, and the main factors affecting the performance of systems are discussed. Results show that hot water with an average temperature of 61 °C can be provided by the new system during aircraft take-off. In the new multi-functional system, the bleed air supply volume during aircraft take-off is less than that of the conventional system, and the system energy loss is also less. When the aircraft just takes off, the condenser accounts for the most significant portion of the system exergy loss. However, the exergy loss in the secondary heat exchanger is the largest, as the aircraft altitude increases. Compared with the conventional system, the exergy efficiency of the new system is 8.85% higher at a 4-5 km level flight, and it’s 3.21% higher at a 9-10 km level flight.

Abstract Image

新型多功能飞机环境控制系统在可变运行条件下的性能分析
随着长途飞行的增加,国内民用飞机热水电加热的广泛使用将对飞机的能源系统提出挑战。此外,飞机起飞过程中,飞机环境控制系统在多变的环境条件下运行,导致系统性能和出口参数发生变化。本文建立了飞机起飞过程中新型飞机环境控制系统的数学模型,并讨论了影响系统性能的主要因素。结果表明,新系统可在飞机起飞时提供平均温度为 61 °C 的热水。在新的多功能系统中,飞机起飞时的排气量小于传统系统,系统能量损失也较小。飞机刚起飞时,冷凝器占系统能量损失的最大部分。然而,随着飞机高度的增加,二级热交换器的能量损失最大。与传统系统相比,新系统的放能效率在 4-5 千米高度飞行时提高了 8.85%,在 9-10 千米高度飞行时提高了 3.21%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Energy Efficiency
Energy Efficiency ENERGY & FUELS-ENERGY & FUELS
CiteScore
5.80
自引率
6.50%
发文量
59
审稿时长
>12 weeks
期刊介绍: The journal Energy Efficiency covers wide-ranging aspects of energy efficiency in the residential, tertiary, industrial and transport sectors. Coverage includes a number of different topics and disciplines including energy efficiency policies at local, regional, national and international levels; long term impact of energy efficiency; technologies to improve energy efficiency; consumer behavior and the dynamics of consumption; socio-economic impacts of energy efficiency measures; energy efficiency as a virtual utility; transportation issues; building issues; energy management systems and energy services; energy planning and risk assessment; energy efficiency in developing countries and economies in transition; non-energy benefits of energy efficiency and opportunities for policy integration; energy education and training, and emerging technologies. See Aims and Scope for more details.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信