S. P. Petrosyants, A. B. Ilyukhin, K. A. Babeshkin, E. A. Ugolkova, V. V. Minin, P. S. Koroteev, N. N. Efimov
{"title":"Influence of the Coordination Environment on the EPR Spectra of Mononuclear Gd Thiocyanates","authors":"S. P. Petrosyants, A. B. Ilyukhin, K. A. Babeshkin, E. A. Ugolkova, V. V. Minin, P. S. Koroteev, N. N. Efimov","doi":"10.1134/S1070328423601413","DOIUrl":null,"url":null,"abstract":"<p>Using the synthesized salt Gd(NCS)<sub>3</sub>·6H<sub>2</sub>O, previously unknown mononuclear molecular complexes [Gd(H<sub>2</sub>O)(bpy)<sub>2</sub>(NCS)<sub>3</sub>]·0.5(bpy)·H<sub>2</sub>O, [Gd(H<sub>2</sub>O)(phen)<sub>2</sub>(NCS)<sub>3</sub>]·phen·0.5H<sub>2</sub>O as well as ionic ones [Hbpy][Gd(NCS)<sub>4</sub>(bpy)<sub>2</sub>]·H<sub>2</sub>O, [Hphen][Gd(NCS)<sub>4</sub>(phen)<sub>2</sub>] (bpy is 2,2'-bipyridine, phen is 1,10-phenanthroline) were prepared. Structural characteristics of the obtained compounds were determined using X-ray diffraction data. The magnetic susceptibility and EPR data of the new Gd complexes are considered taking into account the features of their composition and structure. Due to the peculiarities of the electronic structure, Gd complexes can serve as test systems for analyzing the field strength of ligands and the geometry of the local environment of the 4<i>f</i>-metal ion. It is shown that EPR spectroscopy is highly efficient method for determining the spin Hamiltonian parameters and, consequently, for characterizing the local environment of the gadolinium ion in complexes. However, the EPR method does not allow one to determine the sign of the splitting parameter in the zero field <i>D</i>, which requires additional studies.</p>","PeriodicalId":759,"journal":{"name":"Russian Journal of Coordination Chemistry","volume":"50 4","pages":"246 - 256"},"PeriodicalIF":1.1000,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Journal of Coordination Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1134/S1070328423601413","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0
Abstract
Using the synthesized salt Gd(NCS)3·6H2O, previously unknown mononuclear molecular complexes [Gd(H2O)(bpy)2(NCS)3]·0.5(bpy)·H2O, [Gd(H2O)(phen)2(NCS)3]·phen·0.5H2O as well as ionic ones [Hbpy][Gd(NCS)4(bpy)2]·H2O, [Hphen][Gd(NCS)4(phen)2] (bpy is 2,2'-bipyridine, phen is 1,10-phenanthroline) were prepared. Structural characteristics of the obtained compounds were determined using X-ray diffraction data. The magnetic susceptibility and EPR data of the new Gd complexes are considered taking into account the features of their composition and structure. Due to the peculiarities of the electronic structure, Gd complexes can serve as test systems for analyzing the field strength of ligands and the geometry of the local environment of the 4f-metal ion. It is shown that EPR spectroscopy is highly efficient method for determining the spin Hamiltonian parameters and, consequently, for characterizing the local environment of the gadolinium ion in complexes. However, the EPR method does not allow one to determine the sign of the splitting parameter in the zero field D, which requires additional studies.
期刊介绍:
Russian Journal of Coordination Chemistry is a journal that publishes reviews, original papers, and short communications on all aspects of theoretical and experimental coordination chemistry. Modern coordination chemistry is an interdisciplinary science that makes a bridge between inorganic, organic, physical, analytical, and biological chemistry.