{"title":"Upcycling of waste masks into carbon nanotubes combined with ZIF-8 for the detection of heavy-metal ions and nitrite","authors":"Tong Han, Ying-Ai Piao, Long-Yue Meng, Biao Jin","doi":"10.1007/s42823-024-00778-2","DOIUrl":null,"url":null,"abstract":"<p>Food contamination with heavy-metal ions and nitrites poses a serious threat to human health. Consequently, the development of fast and sensitive platforms for detecting these contaminants is urgently needed. In this study, a novel sensing platform was developed by integrating carbon nanotubes generated by the pyrolysis of waste masks (WMCNTs) with ZIF-8 for the simultaneous detection of Cd<sup>2+</sup>, Pb<sup>2+</sup>, and nitrite. Specifically, the electronic structure of the WMCNT backbone was modulated by doping with B and N atoms. Nanoporous ZIF-8 was then grown in-situ on its surface to produce composites with enhanced electrical conductivities and large specific surface areas. This modification provided more active sites for the attachment of heavy-metal ions and nitrites. Under optimized conditions, the sensing platform exhibited a wide linear range with the Pb<sup>2+</sup>, Cd<sup>2+</sup>, and NO<sub>2</sub><sup>−</sup> limits of detection of 2.68, 12.12, and 5.94 μM, respectively. Notably, the sensing platform demonstrated excellent anti-interference capabilities and effectively detected nitrites and heavy-metal ions in pickled foods.</p><h3 data-test=\"abstract-sub-heading\">Graphical abstract</h3>\n","PeriodicalId":506,"journal":{"name":"Carbon Letters","volume":"69 1","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s42823-024-00778-2","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Food contamination with heavy-metal ions and nitrites poses a serious threat to human health. Consequently, the development of fast and sensitive platforms for detecting these contaminants is urgently needed. In this study, a novel sensing platform was developed by integrating carbon nanotubes generated by the pyrolysis of waste masks (WMCNTs) with ZIF-8 for the simultaneous detection of Cd2+, Pb2+, and nitrite. Specifically, the electronic structure of the WMCNT backbone was modulated by doping with B and N atoms. Nanoporous ZIF-8 was then grown in-situ on its surface to produce composites with enhanced electrical conductivities and large specific surface areas. This modification provided more active sites for the attachment of heavy-metal ions and nitrites. Under optimized conditions, the sensing platform exhibited a wide linear range with the Pb2+, Cd2+, and NO2− limits of detection of 2.68, 12.12, and 5.94 μM, respectively. Notably, the sensing platform demonstrated excellent anti-interference capabilities and effectively detected nitrites and heavy-metal ions in pickled foods.
期刊介绍:
Carbon Letters aims to be a comprehensive journal with complete coverage of carbon materials and carbon-rich molecules. These materials range from, but are not limited to, diamond and graphite through chars, semicokes, mesophase substances, carbon fibers, carbon nanotubes, graphenes, carbon blacks, activated carbons, pyrolytic carbons, glass-like carbons, etc. Papers on the secondary production of new carbon and composite materials from the above mentioned various carbons are within the scope of the journal. Papers on organic substances, including coals, will be considered only if the research has close relation to the resulting carbon materials. Carbon Letters also seeks to keep abreast of new developments in their specialist fields and to unite in finding alternative energy solutions to current issues such as the greenhouse effect and the depletion of the ozone layer. The renewable energy basics, energy storage and conversion, solar energy, wind energy, water energy, nuclear energy, biomass energy, hydrogen production technology, and other clean energy technologies are also within the scope of the journal. Carbon Letters invites original reports of fundamental research in all branches of the theory and practice of carbon science and technology.