A stochastic approximation for the finite-size Kuramoto–Sakaguchi model

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Wenqi Yue, Georg A. Gottwald
{"title":"A stochastic approximation for the finite-size Kuramoto–Sakaguchi model","authors":"Wenqi Yue,&nbsp;Georg A. Gottwald","doi":"10.1016/j.physd.2024.134292","DOIUrl":null,"url":null,"abstract":"<div><p>We perform a stochastic model reduction of the Kuramoto–Sakaguchi model for finitely many coupled phase oscillators with phase frustration. Whereas in the thermodynamic limit coupled oscillators exhibit stationary states and a constant order parameter, finite-size networks exhibit persistent temporal fluctuations of the order parameter. These fluctuations are caused by the interaction of the synchronised oscillators with the non-entrained oscillators. We present numerical results suggesting that the collective effect of the non-entrained oscillators on the synchronised cluster can be approximated by a Gaussian process. This allows for an effective closed evolution equation for the synchronised oscillators driven by a Gaussian process which we approximate by a two-dimensional Ornstein–Uhlenbeck process. Our reduction reproduces the stochastic fluctuations of the order parameter and leads to a simple stochastic differential equation for the order parameter.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0167278924002434/pdfft?md5=357906f7bc2a4bfd31b99c9a9101b6df&pid=1-s2.0-S0167278924002434-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167278924002434","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

We perform a stochastic model reduction of the Kuramoto–Sakaguchi model for finitely many coupled phase oscillators with phase frustration. Whereas in the thermodynamic limit coupled oscillators exhibit stationary states and a constant order parameter, finite-size networks exhibit persistent temporal fluctuations of the order parameter. These fluctuations are caused by the interaction of the synchronised oscillators with the non-entrained oscillators. We present numerical results suggesting that the collective effect of the non-entrained oscillators on the synchronised cluster can be approximated by a Gaussian process. This allows for an effective closed evolution equation for the synchronised oscillators driven by a Gaussian process which we approximate by a two-dimensional Ornstein–Uhlenbeck process. Our reduction reproduces the stochastic fluctuations of the order parameter and leads to a simple stochastic differential equation for the order parameter.

有限尺寸仓本坂口模型的随机近似值
我们对具有相位挫折的有限多个耦合相位振荡器的仓本-阪口模型进行了随机模型还原。在热力学极限中,耦合振荡器表现出静止状态和恒定的阶次参数,而有限大小的网络则表现出持续的阶次参数时间波动。这些波动是由同步振荡器与非约束振荡器的相互作用引起的。我们给出的数值结果表明,非约束振荡器对同步集群的集体影响可以用高斯过程来近似。这就为我们用二维奥恩斯坦-乌伦贝克过程近似表示的高斯过程驱动的同步振荡器提供了一个有效的封闭演化方程。我们的还原再现了阶次参数的随机波动,并为阶次参数引出了一个简单的随机微分方程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信