Thermodynamically consistent Cahn–Hilliard–Navier–Stokes equations using the metriplectic dynamics formalism

IF 2.7 3区 数学 Q1 MATHEMATICS, APPLIED
{"title":"Thermodynamically consistent Cahn–Hilliard–Navier–Stokes equations using the metriplectic dynamics formalism","authors":"","doi":"10.1016/j.physd.2024.134303","DOIUrl":null,"url":null,"abstract":"<div><p>Cahn–Hilliard–Navier–Stokes (CHNS) systems describe flows with two-phases, e.g., a liquid with bubbles. Obtaining constitutive relations for general dissipative processes for such systems, which are thermodynamically consistent, can be a challenge. We show how the metriplectic 4-bracket formalism (Morrison and Updike, 2024) achieves this in a straightforward, in fact algorithmic, manner. First, from the noncanonical Hamiltonian formulation for the ideal part of a CHNS system we obtain an appropriate Casimir to serve as the entropy in the metriplectic formalism that describes the dissipation (e.g. viscosity, heat conductivity and diffusion effects). General thermodynamics with the concentration variable and its thermodynamics conjugate, the chemical potential, are included. Having expressions for the Hamiltonian (energy), entropy, and Poisson bracket, we describe a procedure for obtaining a metriplectic 4-bracket that describes thermodynamically consistent dissipative effects. The 4-bracket formalism leads naturally to a general CHNS system that allows for anisotropic surface energy effects. This general CHNS system reduces to cases in the literature, to which we can compare.</p></div>","PeriodicalId":20050,"journal":{"name":"Physica D: Nonlinear Phenomena","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica D: Nonlinear Phenomena","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167278924002549","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Cahn–Hilliard–Navier–Stokes (CHNS) systems describe flows with two-phases, e.g., a liquid with bubbles. Obtaining constitutive relations for general dissipative processes for such systems, which are thermodynamically consistent, can be a challenge. We show how the metriplectic 4-bracket formalism (Morrison and Updike, 2024) achieves this in a straightforward, in fact algorithmic, manner. First, from the noncanonical Hamiltonian formulation for the ideal part of a CHNS system we obtain an appropriate Casimir to serve as the entropy in the metriplectic formalism that describes the dissipation (e.g. viscosity, heat conductivity and diffusion effects). General thermodynamics with the concentration variable and its thermodynamics conjugate, the chemical potential, are included. Having expressions for the Hamiltonian (energy), entropy, and Poisson bracket, we describe a procedure for obtaining a metriplectic 4-bracket that describes thermodynamically consistent dissipative effects. The 4-bracket formalism leads naturally to a general CHNS system that allows for anisotropic surface energy effects. This general CHNS system reduces to cases in the literature, to which we can compare.

使用元三体动力学形式主义的热力学一致的卡恩-希利亚德-纳维尔-斯托克斯方程
卡恩-希利亚德-纳维尔-斯托克斯(Cahn-Hilliard-Navier-Stokes,CHNS)系统描述的是两相流动,如带有气泡的液体。为这种系统获取热力学上一致的一般耗散过程的构成关系是一项挑战。我们展示了元三偏 4-bracket形式主义(莫里森和厄普代克,2024 年)如何以一种简单明了、实际上是算法化的方式实现这一目标。首先,从 CHNS 系统理想部分的非规范哈密顿公式中,我们得到了一个适当的卡西米尔(Casimir),作为描述耗散(如粘度、热传导和扩散效应)的元三偏形式主义中的熵。一般热力学包括浓度变量及其热力学共轭物--化学势。有了哈密顿(能量)、熵和泊松括号的表达式,我们描述了获得元折中 4 个括号的过程,该 4 个括号描述了热力学上一致的耗散效应。4-括号形式自然引出了允许各向异性表面能效应的一般 CHNS 系统。这个一般 CHNS 系统可还原为文献中的案例,我们可以与之进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physica D: Nonlinear Phenomena
Physica D: Nonlinear Phenomena 物理-物理:数学物理
CiteScore
7.30
自引率
7.50%
发文量
213
审稿时长
65 days
期刊介绍: Physica D (Nonlinear Phenomena) publishes research and review articles reporting on experimental and theoretical works, techniques and ideas that advance the understanding of nonlinear phenomena. Topics encompass wave motion in physical, chemical and biological systems; physical or biological phenomena governed by nonlinear field equations, including hydrodynamics and turbulence; pattern formation and cooperative phenomena; instability, bifurcations, chaos, and space-time disorder; integrable/Hamiltonian systems; asymptotic analysis and, more generally, mathematical methods for nonlinear systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信