Unified force-impedance control

Sami Haddadin, Erfan Shahriari
{"title":"Unified force-impedance control","authors":"Sami Haddadin, Erfan Shahriari","doi":"10.1177/02783649241249194","DOIUrl":null,"url":null,"abstract":"Unified force-impedance control (UFIC) aims at integrating the advantages of impedance control and force control. Compliance and exact force regulation are equally important abilities in modern robot manipulation. The developed passivity-based framework builds on the energy tank concept and is suitable for serial rigid and flexible-joint robots. Furthermore, it is able to deal either with direct force measurements or model-based contact force estimation. Thus, in this theoretical framework, the most relevant practical systems are covered and shown to be stable for arbitrary passive environments. Particular focus is also laid on a robust impedance-based contact/non-contact stabilization methodology that prevents abrupt, unwanted, and potentially dangerous movements of the manipulator in case of contact loss, a well-known problem of both impedance and force control. The validity of the approach is shown in simulation and through various experiments. Our work roots in Haddadin (2015); Schindlbeck and Haddadin (2015), where the basic UFIC regulation controller was proposed. In the present paper, we significantly advance this idea into a complete theoretical UFIC tracking framework, including rigorous stability analysis and extensive experimental evidence.","PeriodicalId":501362,"journal":{"name":"The International Journal of Robotics Research","volume":"20 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The International Journal of Robotics Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/02783649241249194","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Unified force-impedance control (UFIC) aims at integrating the advantages of impedance control and force control. Compliance and exact force regulation are equally important abilities in modern robot manipulation. The developed passivity-based framework builds on the energy tank concept and is suitable for serial rigid and flexible-joint robots. Furthermore, it is able to deal either with direct force measurements or model-based contact force estimation. Thus, in this theoretical framework, the most relevant practical systems are covered and shown to be stable for arbitrary passive environments. Particular focus is also laid on a robust impedance-based contact/non-contact stabilization methodology that prevents abrupt, unwanted, and potentially dangerous movements of the manipulator in case of contact loss, a well-known problem of both impedance and force control. The validity of the approach is shown in simulation and through various experiments. Our work roots in Haddadin (2015); Schindlbeck and Haddadin (2015), where the basic UFIC regulation controller was proposed. In the present paper, we significantly advance this idea into a complete theoretical UFIC tracking framework, including rigorous stability analysis and extensive experimental evidence.
力阻抗统一控制
力-阻抗统一控制(UFIC)旨在整合阻抗控制和力控制的优势。顺应性和精确力调节是现代机器人操纵中同等重要的能力。所开发的基于被动性的框架以能量槽概念为基础,适用于串行刚性和柔性关节机器人。此外,它还能处理直接的力测量或基于模型的接触力估算。因此,在这一理论框架中,涵盖了最相关的实用系统,并证明这些系统在任意被动环境下都能保持稳定。此外,还特别关注了一种基于阻抗的接触/非接触稳态方法,该方法可防止机械手在失去接触的情况下发生突然的、不必要的和潜在的危险运动,这是阻抗和力控制的一个众所周知的问题。我们通过模拟和各种实验证明了这种方法的有效性。我们的工作源于 Haddadin (2015);Schindlbeck 和 Haddadin (2015),其中提出了基本的 UFIC 调节控制器。在本文中,我们将这一想法大大推进为一个完整的 UFIC 跟踪理论框架,包括严格的稳定性分析和广泛的实验证据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信