On the role of surface elasticity in nonlinear planar stability of FG porous reinforced nanosize curved beams having different degrees of curvature

IF 4.4 2区 工程技术 Q1 MECHANICS
{"title":"On the role of surface elasticity in nonlinear planar stability of FG porous reinforced nanosize curved beams having different degrees of curvature","authors":"","doi":"10.1016/j.euromechsol.2024.105384","DOIUrl":null,"url":null,"abstract":"<div><p>The prime target of the present study is to inspect the role of surface elasticity at nanoscale in changing the stability branches as well as lower and upper limit loads of uniformly thermomechanical loaded curved nanobeams having different degrees of curvature. To this end, the classical and surface elastic-based multiple equilibria are predicted for nanosized third-order shear flexible clamped curved beams consisted of through-thickness functionally graded porosity with different graded schemes besides reinforcing by graphene nanofillers. The established nanoscale-dependent nonlinear formulations are then solved numerically with the aid of the isogeometric collocation technique creating a distinct grid of collocation points allocated to the contemplated basis assortments individually via the Greville abscissas. It is deduced that by taking the temperature escalation into account, along with the applied sidewise uniform pressure, the prominence of the surface stress effects on the quantity of upper limit load reduces, while the prominence of them on the quantity of lower limit load enhances. These anticipations become more prominent for a FGP reinforced curved nanobeam possessing less degree of curvature. Accordingly, owning to the small-curved nanobeam, by increasing the amount of temperature escalation from <span><math><mrow><mn>150</mn><mo>°C</mo></mrow></math></span> to <span><math><mrow><mn>300</mn><mo>°C</mo></mrow></math></span>, the prominence of surface stress effects on the upper limit load turns down from <span><math><mrow><mn>16.90</mn><mo>%</mo></mrow></math></span> to <span><math><mrow><mn>1.51</mn><mo>%</mo></mrow></math></span> if <span><math><mrow><mi>h</mi><mo>=</mo><mn>15</mn><mspace></mspace><mi>n</mi><mi>m</mi></mrow></math></span>, from <span><math><mrow><mn>6.76</mn><mo>%</mo></mrow></math></span> to <span><math><mrow><mn>0.38</mn><mo>%</mo></mrow></math></span> if <span><math><mrow><mi>h</mi><mo>=</mo><mn>30</mn><mspace></mspace><mi>n</mi><mi>m</mi></mrow></math></span>, and from <span><math><mrow><mn>2.48</mn><mo>%</mo></mrow></math></span> to <span><math><mrow><mn>0.07</mn><mo>%</mo></mrow></math></span> if <span><math><mrow><mi>h</mi><mo>=</mo><mn>60</mn><mspace></mspace><mi>n</mi><mi>m</mi></mrow></math></span>. While the prominence of surface stress effects on the lower limit load gets higher from <span><math><mrow><mn>48.69</mn><mo>%</mo></mrow></math></span> to <span><math><mrow><mn>138.25</mn><mo>%</mo></mrow></math></span> if <span><math><mrow><mi>h</mi><mo>=</mo><mn>15</mn><mspace></mspace><mi>n</mi><mi>m</mi></mrow></math></span>, from <span><math><mrow><mn>22.70</mn><mo>%</mo></mrow></math></span> to <span><math><mrow><mn>83.95</mn><mo>%</mo></mrow></math></span> if <span><math><mrow><mi>h</mi><mo>=</mo><mn>30</mn><mspace></mspace><mi>n</mi><mi>m</mi></mrow></math></span>, and from <span><math><mrow><mn>8.89</mn><mo>%</mo></mrow></math></span> to <span><math><mrow><mn>22.91</mn><mo>%</mo></mrow></math></span> if <span><math><mrow><mi>h</mi><mo>=</mo><mn>60</mn><mspace></mspace><mi>n</mi><mi>m</mi></mrow></math></span>. Owning to the medium-curved nanobeam, by increasing the amount of temperature rise from <span><math><mrow><mn>150</mn><mo>°C</mo></mrow></math></span> to <span><math><mrow><mn>300</mn><mo>°C</mo></mrow></math></span>, the prominence of surface stress effects on the upper limit load turns down from <span><math><mrow><mn>14.98</mn><mo>%</mo></mrow></math></span> to <span><math><mrow><mn>12.68</mn><mo>%</mo></mrow></math></span> if <span><math><mrow><mi>h</mi><mo>=</mo><mn>15</mn><mspace></mspace><mi>n</mi><mi>m</mi></mrow></math></span>, from <span><math><mrow><mn>7.09</mn><mo>%</mo></mrow></math></span> to <span><math><mrow><mn>6.03</mn><mo>%</mo></mrow></math></span> if <span><math><mrow><mi>h</mi><mo>=</mo><mn>30</mn><mspace></mspace><mi>n</mi><mi>m</mi></mrow></math></span>, and from <span><math><mrow><mn>2.84</mn><mo>%</mo></mrow></math></span> to <span><math><mrow><mn>2.41</mn><mo>%</mo></mrow></math></span> if <span><math><mrow><mi>h</mi><mo>=</mo><mn>60</mn><mspace></mspace><mi>n</mi><mi>m</mi></mrow></math></span>. Alternatively, owning to the large-curved nanobeam, by increasing the amount of temperature escalation from <span><math><mrow><mn>150</mn><mo>°C</mo></mrow></math></span> to <span><math><mrow><mn>300</mn><mo>°C</mo></mrow></math></span>, the prominence of surface stress effects on the upper limit load turns down from <span><math><mrow><mn>22.30</mn><mo>%</mo></mrow></math></span> to <span><math><mrow><mn>21.15</mn><mo>%</mo></mrow></math></span> if <span><math><mrow><mi>h</mi><mo>=</mo><mn>15</mn><mspace></mspace><mi>n</mi><mi>m</mi></mrow></math></span>, from <span><math><mrow><mn>10.38</mn><mo>%</mo></mrow></math></span> to <span><math><mrow><mn>9.82</mn><mo>%</mo></mrow></math></span> if <span><math><mrow><mi>h</mi><mo>=</mo><mn>30</mn><mspace></mspace><mi>n</mi><mi>m</mi></mrow></math></span>, and from <span><math><mrow><mn>4.11</mn><mo>%</mo></mrow></math></span> to <span><math><mrow><mn>3.87</mn><mo>%</mo></mrow></math></span> if <span><math><mrow><mi>h</mi><mo>=</mo><mn>60</mn><mspace></mspace><mi>n</mi><mi>m</mi></mrow></math></span>.</p></div>","PeriodicalId":50483,"journal":{"name":"European Journal of Mechanics A-Solids","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0997753824001645/pdfft?md5=7be6a5ccbb61759b0d23239100a8f808&pid=1-s2.0-S0997753824001645-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Mechanics A-Solids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0997753824001645","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

The prime target of the present study is to inspect the role of surface elasticity at nanoscale in changing the stability branches as well as lower and upper limit loads of uniformly thermomechanical loaded curved nanobeams having different degrees of curvature. To this end, the classical and surface elastic-based multiple equilibria are predicted for nanosized third-order shear flexible clamped curved beams consisted of through-thickness functionally graded porosity with different graded schemes besides reinforcing by graphene nanofillers. The established nanoscale-dependent nonlinear formulations are then solved numerically with the aid of the isogeometric collocation technique creating a distinct grid of collocation points allocated to the contemplated basis assortments individually via the Greville abscissas. It is deduced that by taking the temperature escalation into account, along with the applied sidewise uniform pressure, the prominence of the surface stress effects on the quantity of upper limit load reduces, while the prominence of them on the quantity of lower limit load enhances. These anticipations become more prominent for a FGP reinforced curved nanobeam possessing less degree of curvature. Accordingly, owning to the small-curved nanobeam, by increasing the amount of temperature escalation from 150°C to 300°C, the prominence of surface stress effects on the upper limit load turns down from 16.90% to 1.51% if h=15nm, from 6.76% to 0.38% if h=30nm, and from 2.48% to 0.07% if h=60nm. While the prominence of surface stress effects on the lower limit load gets higher from 48.69% to 138.25% if h=15nm, from 22.70% to 83.95% if h=30nm, and from 8.89% to 22.91% if h=60nm. Owning to the medium-curved nanobeam, by increasing the amount of temperature rise from 150°C to 300°C, the prominence of surface stress effects on the upper limit load turns down from 14.98% to 12.68% if h=15nm, from 7.09% to 6.03% if h=30nm, and from 2.84% to 2.41% if h=60nm. Alternatively, owning to the large-curved nanobeam, by increasing the amount of temperature escalation from 150°C to 300°C, the prominence of surface stress effects on the upper limit load turns down from 22.30% to 21.15% if h=15nm, from 10.38% to 9.82% if h=30nm, and from 4.11% to 3.87% if h=60nm.

论表面弹性在具有不同曲率的 FG 多孔增强纳米曲面梁的非线性平面稳定性中的作用
本研究的主要目标是考察纳米级表面弹性在改变具有不同曲率度的均匀热机械加载弯曲纳米梁的稳定性分支以及下限和上限载荷方面的作用。为此,我们预测了纳米三阶剪切柔性夹紧曲面梁的经典平衡和基于表面弹性的多重平衡,这些曲面梁由通厚功能分级孔隙组成,除了石墨烯纳米填料增强外,还采用了不同的分级方案。然后,借助等几何配位技术对所建立的依赖于纳米尺度的非线性公式进行数值求解,通过格雷维尔缺省,为所考虑的基础组合单独分配不同的配位点网格。由此可以推断,考虑到温度升高和侧向均匀压力,表面应力对上限载荷量的影响会减小,而对下限载荷量的影响会增大。对于曲率较小的 FGP 加固曲面纳米梁来说,这些预期会变得更加突出。因此,对于小曲率纳米梁,通过增加温度升高量(从到),表面应力对上限载荷的影响从(如果)减小到(如果)、(如果)减小到(如果)和(如果)减小到(如果)。对于中弧形纳米梁,通过增加温升(从 至 ),表面应力对上限载荷的影响从(如果 )转为(如果 ),从(如果 )转为(如果 ),从(如果 )转为(如果 )。另外,如果采用大弧度纳米梁,将温度升高量从 至 增加,则对上限载荷的表面应力影响从 至 ,从 至 至 ,从 至 至 。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.00
自引率
7.30%
发文量
275
审稿时长
48 days
期刊介绍: The European Journal of Mechanics endash; A/Solids continues to publish articles in English in all areas of Solid Mechanics from the physical and mathematical basis to materials engineering, technological applications and methods of modern computational mechanics, both pure and applied research.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信