Molecular Dynamics Simulation of Uniaxial Tensile Mechanical Properties and Failure Mechanisms of MgAl2O4 Spinel

IF 3.4 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Aiqiong Pan, Wenyan Wang, Hui Zhang, Shiming Hao, Jingpei Xie, Aiqin Wang
{"title":"Molecular Dynamics Simulation of Uniaxial Tensile Mechanical Properties and Failure Mechanisms of MgAl2O4 Spinel","authors":"Aiqiong Pan,&nbsp;Wenyan Wang,&nbsp;Hui Zhang,&nbsp;Shiming Hao,&nbsp;Jingpei Xie,&nbsp;Aiqin Wang","doi":"10.1002/adem.202400476","DOIUrl":null,"url":null,"abstract":"<p>This study employs the molecular dynamics method to examine the tensile mechanical properties and failure mechanism of MgAl<sub>2</sub>O<sub>4</sub> spinel along [001] orientation. The results indicate that the mechanical properties of MgAl<sub>2</sub>O<sub>4</sub> are sensitive to temperature. Young's modulus and ultimate tensile strength (UTS) of MgAl<sub>2</sub>O<sub>4</sub> exhibit a linear decrease with increasing temperature from 100 to 2100 K. Specifically, Young's modulus decreases from 237.1 to 154.9 GPa, while the UTS decreases from 23.9 to 11.5 GPa. The failure mechanism of MgAl<sub>2</sub>O<sub>4</sub> under uniaxial tensile loading is a brittle fracture induced by point defects. The propagation of microcracks in MgAl<sub>2</sub>O<sub>4</sub> single crystal during tension is related to the slip band. The temperature does not have a significant effect on the direction of microcrack propagation, but it influences the crack expansion rate. In addition, the effect of strain rate on the mechanical properties of MgAl<sub>2</sub>O<sub>4</sub> has been explored. In the range of 5 × 10<sup>8</sup> to 2 × 10<sup>10</sup> s<sup>−1</sup>, the strain rate has almost no effect on the elastic modulus and the crack propagation direction and has little influence on the UTS. However, high strain rates delay the initiation of MgAl<sub>2</sub>O<sub>4</sub> cracking.</p>","PeriodicalId":7275,"journal":{"name":"Advanced Engineering Materials","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Engineering Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adem.202400476","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This study employs the molecular dynamics method to examine the tensile mechanical properties and failure mechanism of MgAl2O4 spinel along [001] orientation. The results indicate that the mechanical properties of MgAl2O4 are sensitive to temperature. Young's modulus and ultimate tensile strength (UTS) of MgAl2O4 exhibit a linear decrease with increasing temperature from 100 to 2100 K. Specifically, Young's modulus decreases from 237.1 to 154.9 GPa, while the UTS decreases from 23.9 to 11.5 GPa. The failure mechanism of MgAl2O4 under uniaxial tensile loading is a brittle fracture induced by point defects. The propagation of microcracks in MgAl2O4 single crystal during tension is related to the slip band. The temperature does not have a significant effect on the direction of microcrack propagation, but it influences the crack expansion rate. In addition, the effect of strain rate on the mechanical properties of MgAl2O4 has been explored. In the range of 5 × 108 to 2 × 1010 s−1, the strain rate has almost no effect on the elastic modulus and the crack propagation direction and has little influence on the UTS. However, high strain rates delay the initiation of MgAl2O4 cracking.

Abstract Image

单轴拉伸力学性能和 MgAl2O4 尖晶石失效机理的分子动力学模拟
本研究采用分子动力学方法研究了 MgAl2O4 尖晶石沿 [001] 方向的拉伸力学性能和破坏机理。结果表明,MgAl2O4 的力学性能对温度很敏感。从 100 到 2100 K,MgAl2O4 的杨氏模量和极限拉伸强度(UTS)随着温度的升高呈线性下降趋势,具体来说,杨氏模量从 237.1 GPa 下降到 154.9 GPa,而极限拉伸强度则从 23.9 GPa 下降到 11.5 GPa。MgAl2O4 在单轴拉伸载荷下的破坏机理是由点缺陷诱发的脆性断裂。拉伸过程中 MgAl2O4 单晶中微裂纹的扩展与滑移带有关。温度对微裂纹扩展方向的影响不大,但会影响裂纹扩展速率。此外,还探讨了应变速率对 MgAl2O4 力学性能的影响。在 5 × 108 到 2 × 1010 s-1 的范围内,应变速率对弹性模量和裂纹扩展方向几乎没有影响,对 UTS 的影响也很小。然而,高应变速率会延迟 MgAl2O4 裂纹的产生。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Engineering Materials
Advanced Engineering Materials 工程技术-材料科学:综合
CiteScore
5.70
自引率
5.60%
发文量
544
审稿时长
1.7 months
期刊介绍: Advanced Engineering Materials is the membership journal of three leading European Materials Societies - German Materials Society/DGM, - French Materials Society/SF2M, - Swiss Materials Federation/SVMT.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信