Maya S. Montalvo, Emilio Grande, Anna E. Braswell, Ate Visser, Bhavna Arora, Erin C. Seybold, Corianne Tatariw, John C. Haskins, Charlie A. Endris, Fuller Gerbl, Mong-Han Huang, Darya Morozov, Margaret A. Zimmer
{"title":"A Fresh Take: Seasonal Changes in Terrestrial Freshwater Inputs Impact Salt Marsh Hydrology and Vegetation Dynamics","authors":"Maya S. Montalvo, Emilio Grande, Anna E. Braswell, Ate Visser, Bhavna Arora, Erin C. Seybold, Corianne Tatariw, John C. Haskins, Charlie A. Endris, Fuller Gerbl, Mong-Han Huang, Darya Morozov, Margaret A. Zimmer","doi":"10.1007/s12237-024-01392-1","DOIUrl":null,"url":null,"abstract":"<p>Salt marshes exist at the terrestrial-marine interface, providing important ecosystem services such as nutrient cycling and carbon sequestration. Tidal inputs play a dominant role in salt marsh porewater mixing, and terrestrially derived freshwater inputs are increasingly recognized as important sources of water and solutes to intertidal wetlands. However, there remains a critical gap in understanding the role of freshwater inputs on salt marsh hydrology, and how this may impact marsh subsurface salinity and plant productivity. Here, we address this knowledge gap by examining the hydrologic behavior, porewater salinity, and pickleweed (<i>Sarcocornia pacifica</i> also known as <i>Salicornia pacifica)</i> plant productivity along a salt marsh transect in an estuary along the central coast of California. Through the installation of a suite of hydrometric sensors and routine porewater sampling and vegetation surveys, we sought to understand how seasonal changes in terrestrial freshwater inputs impact salt marsh ecohydrologic processes. We found that salt marsh porewater salinity, shallow subsurface saturation, and pickleweed productivity are closely coupled with elevated upland water level during the winter and spring, and more influenced by tidal inputs during the summer and fall. This seasonal response indicates a switch in salt marsh hydrologic connectivity with the terrestrial upland that impacts ecosystem functioning. Through elucidating the interannual impacts of drought on salt marsh hydrology, we found that the severity of drought and historical precipitation can impact contemporary hydrologic behavior and the duration and timing of the upland-marsh hydrologic connectivity. This implies that the sensitivity of salt marshes to climate change involves a complex interaction between sea level rise and freshwater inputs that vary at seasonal to interannual timescales.\n</p>","PeriodicalId":11921,"journal":{"name":"Estuaries and Coasts","volume":"45 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Estuaries and Coasts","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s12237-024-01392-1","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Salt marshes exist at the terrestrial-marine interface, providing important ecosystem services such as nutrient cycling and carbon sequestration. Tidal inputs play a dominant role in salt marsh porewater mixing, and terrestrially derived freshwater inputs are increasingly recognized as important sources of water and solutes to intertidal wetlands. However, there remains a critical gap in understanding the role of freshwater inputs on salt marsh hydrology, and how this may impact marsh subsurface salinity and plant productivity. Here, we address this knowledge gap by examining the hydrologic behavior, porewater salinity, and pickleweed (Sarcocornia pacifica also known as Salicornia pacifica) plant productivity along a salt marsh transect in an estuary along the central coast of California. Through the installation of a suite of hydrometric sensors and routine porewater sampling and vegetation surveys, we sought to understand how seasonal changes in terrestrial freshwater inputs impact salt marsh ecohydrologic processes. We found that salt marsh porewater salinity, shallow subsurface saturation, and pickleweed productivity are closely coupled with elevated upland water level during the winter and spring, and more influenced by tidal inputs during the summer and fall. This seasonal response indicates a switch in salt marsh hydrologic connectivity with the terrestrial upland that impacts ecosystem functioning. Through elucidating the interannual impacts of drought on salt marsh hydrology, we found that the severity of drought and historical precipitation can impact contemporary hydrologic behavior and the duration and timing of the upland-marsh hydrologic connectivity. This implies that the sensitivity of salt marshes to climate change involves a complex interaction between sea level rise and freshwater inputs that vary at seasonal to interannual timescales.
期刊介绍:
Estuaries and Coasts is the journal of the Coastal and Estuarine Research Federation (CERF). Begun in 1977 as Chesapeake Science, the journal has gradually expanded its scope and circulation. Today, the journal publishes scholarly manuscripts on estuarine and near coastal ecosystems at the interface between the land and the sea where there are tidal fluctuations or sea water is diluted by fresh water. The interface is broadly defined to include estuaries and nearshore coastal waters including lagoons, wetlands, tidal fresh water, shores and beaches, but not the continental shelf. The journal covers research on physical, chemical, geological or biological processes, as well as applications to management of estuaries and coasts. The journal publishes original research findings, reviews and perspectives, techniques, comments, and management applications. Estuaries and Coasts will consider properly carried out studies that present inconclusive findings or document a failed replication of previously published work. Submissions that are primarily descriptive, strongly place-based, or only report on development of models or new methods without detailing their applications fall outside the scope of the journal.