Sonia Cacini, Paola Antonia Deligios, Daniele Massa, Pasquale Tripodi, Federica Alchera, Luigi Ledda, Marco Ginepro, Sara Melito
{"title":"Salinity Tolerance of Diplotaxis tenuifolia Varieties Growing in Spring–Summer Season Under Mediterranean Greenhouse and Optimal Growing Conditions","authors":"Sonia Cacini, Paola Antonia Deligios, Daniele Massa, Pasquale Tripodi, Federica Alchera, Luigi Ledda, Marco Ginepro, Sara Melito","doi":"10.1007/s42729-024-01950-3","DOIUrl":null,"url":null,"abstract":"<p>Salinity is one of the principal abiotic stresses that occurs in the Mediterranean area, causing loss of productivity and decrease of vegetable crop quality. The effect of salinity (0, 25, 75, 150 mM NaCl) was evaluated in three <i>Diplotaxis tenuifolia</i> varieties (Dragon Tongue, Capriccio, Piccante), previously selected for salinity tolerance and high glucosinolates production in leaves. The aim of this research was to explore the salinity tolerance of three wild rocket varieties cultivated under optimal temperature conditions and under high temperature that typically characterized the Mediterranean greenhouse. Biometric, biomass, pigment production and physiological parameters were evaluated. Biometric, physiological, and biochemical parameters significantly varied because of variety, salt level used and environmental conditions. PCA analysis highlighted that the two cultivation systems deeply affected the wild rockets response to salt stress. In general, under optimal growing conditions, wild rocket varieties showed higher growth parameters compared to greenhouse conditions. Overall Capriccio was the most susceptible variety to salinity, while Dragon Tongue (V1) and Piccante (V3) were more tolerant to salt stress. Furthermore, in both growing conditions V1 was the less productive variety while V3 showed an opposite trend. Interestingly, gene (<i>DtOxo</i> and <i>DtGst</i>) expression analysis revealed a significant increase of the target gene expression as response of salinity levels, with a clear increase of <i>DtOxo</i> level in V1 and V3. The results obtained in this study can be useful to plan future breeding programs aimed to increase rocket quality grown under Mediterranean conditions.</p>","PeriodicalId":17042,"journal":{"name":"Journal of Soil Science and Plant Nutrition","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Soil Science and Plant Nutrition","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s42729-024-01950-3","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Salinity is one of the principal abiotic stresses that occurs in the Mediterranean area, causing loss of productivity and decrease of vegetable crop quality. The effect of salinity (0, 25, 75, 150 mM NaCl) was evaluated in three Diplotaxis tenuifolia varieties (Dragon Tongue, Capriccio, Piccante), previously selected for salinity tolerance and high glucosinolates production in leaves. The aim of this research was to explore the salinity tolerance of three wild rocket varieties cultivated under optimal temperature conditions and under high temperature that typically characterized the Mediterranean greenhouse. Biometric, biomass, pigment production and physiological parameters were evaluated. Biometric, physiological, and biochemical parameters significantly varied because of variety, salt level used and environmental conditions. PCA analysis highlighted that the two cultivation systems deeply affected the wild rockets response to salt stress. In general, under optimal growing conditions, wild rocket varieties showed higher growth parameters compared to greenhouse conditions. Overall Capriccio was the most susceptible variety to salinity, while Dragon Tongue (V1) and Piccante (V3) were more tolerant to salt stress. Furthermore, in both growing conditions V1 was the less productive variety while V3 showed an opposite trend. Interestingly, gene (DtOxo and DtGst) expression analysis revealed a significant increase of the target gene expression as response of salinity levels, with a clear increase of DtOxo level in V1 and V3. The results obtained in this study can be useful to plan future breeding programs aimed to increase rocket quality grown under Mediterranean conditions.
期刊介绍:
The Journal of Soil Science and Plant Nutrition is an international, peer reviewed journal devoted to publishing original research findings in the areas of soil science, plant nutrition, agriculture and environmental science.
Soil sciences submissions may cover physics, chemistry, biology, microbiology, mineralogy, ecology, pedology, soil classification and amelioration.
Plant nutrition and agriculture submissions may include plant production, physiology and metabolism of plants, plant ecology, diversity and sustainability of agricultural systems, organic and inorganic fertilization in relation to their impact on yields, quality of plants and ecological systems, and agroecosystems studies.
Submissions covering soil degradation, environmental pollution, nature conservation, and environmental protection are also welcome.
The journal considers for publication original research articles, technical notes, short communication, and reviews (both voluntary and by invitation), and letters to the editor.