Exploring the Impact of Lanthanum on Sodium Manganese Oxide Cathodes: Insight into Electrochemical Performance

IF 3.6 4区 工程技术 Q3 ENERGY & FUELS
Rawdah Whba, Sebahat Altundag, Mustafa Göktan Aydin, Burcu Kalyoncuoglu, Metin Ozgul, Tolga Depci, Serdar Altin, Sevda Sahinbay
{"title":"Exploring the Impact of Lanthanum on Sodium Manganese Oxide Cathodes: Insight into Electrochemical Performance","authors":"Rawdah Whba,&nbsp;Sebahat Altundag,&nbsp;Mustafa Göktan Aydin,&nbsp;Burcu Kalyoncuoglu,&nbsp;Metin Ozgul,&nbsp;Tolga Depci,&nbsp;Serdar Altin,&nbsp;Sevda Sahinbay","doi":"10.1002/ente.202400824","DOIUrl":null,"url":null,"abstract":"<p>This investigation focuses on nominally La-doped Na<sub>0.67</sub>MnO<sub>2</sub>, exploring its structural, electrochemical, and battery characteristics for Na-ion batteries. X-ray diffraction analysis reveals formation of composite materials containing three distinct phases: P2-Na<sub>0.67</sub>MnO<sub>2</sub>, NaMn<sub>8</sub>O<sub>16</sub>, and LaMnO<sub>3</sub>. The bond structures of the powders undergo scrutiny through Fourier-transform infrared and Raman analyses, revealing dependencies on the Na<span></span>O, Mn<span></span>O, and La<span></span>O structures. X-ray photoelectron spectroscopy and energy-dispersive X-ray dot mapping analyses show that the La ions are unevenly dispersed within the samples, exhibiting a valence state of 3+. Half-cell tests unveil similarities in redox peaks between the cyclic voltammetry analysis of La-doped samples and P2-type Na<sub>0.67</sub>MnO<sub>2</sub>, with a reduction in peak intensities as La content increases. Electrochemical impedance spectroscopy model analysis indicates direct influences of La content on the half-cell's resistive elements values. The synergistic effect of composite material with multiple phases yields promising battery performances for both half and full cells. The highest initial capacity value of 208.7 mAh g<sup>−1</sup>, with a 57% capacity fade, among others, is observed, and it diminishes with increasing La content. Full cells are constructed using an electrochemically presodiated hard carbon anode, yielding a promising capacity value of 184.5 mAh g<sup>−1</sup> for sodium-ion battery studies.</p>","PeriodicalId":11573,"journal":{"name":"Energy technology","volume":"12 10","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy technology","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ente.202400824","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

This investigation focuses on nominally La-doped Na0.67MnO2, exploring its structural, electrochemical, and battery characteristics for Na-ion batteries. X-ray diffraction analysis reveals formation of composite materials containing three distinct phases: P2-Na0.67MnO2, NaMn8O16, and LaMnO3. The bond structures of the powders undergo scrutiny through Fourier-transform infrared and Raman analyses, revealing dependencies on the NaO, MnO, and LaO structures. X-ray photoelectron spectroscopy and energy-dispersive X-ray dot mapping analyses show that the La ions are unevenly dispersed within the samples, exhibiting a valence state of 3+. Half-cell tests unveil similarities in redox peaks between the cyclic voltammetry analysis of La-doped samples and P2-type Na0.67MnO2, with a reduction in peak intensities as La content increases. Electrochemical impedance spectroscopy model analysis indicates direct influences of La content on the half-cell's resistive elements values. The synergistic effect of composite material with multiple phases yields promising battery performances for both half and full cells. The highest initial capacity value of 208.7 mAh g−1, with a 57% capacity fade, among others, is observed, and it diminishes with increasing La content. Full cells are constructed using an electrochemically presodiated hard carbon anode, yielding a promising capacity value of 184.5 mAh g−1 for sodium-ion battery studies.

Abstract Image

探索镧对氧化锰钠阴极的影响:洞察电化学性能
这项研究的重点是名义上掺杂 La 的 Na0.67MnO2,探索其结构、电化学和电池特性,以用于锰离子电池。X 射线衍射分析表明,复合材料的形成包含三种不同的相:P2-Na0.67MnO2、NaMn8O16 和 LaMnO3。通过傅立叶变换红外和拉曼分析,对粉末的键结构进行了仔细研究,揭示了 NaO、MnO 和 LaO 结构的相关性。X 射线光电子能谱和能量色散 X 射线点阵图分析表明,La 离子在样品中分散不均,呈现 3+ 价态。半电池测试揭示了掺 La 样品和 P2- 型 Na0.67MnO2 的循环伏安分析中氧化还原峰的相似性,随着 La 含量的增加,峰强度降低。电化学阻抗谱模型分析表明,La 含量对半电池的电阻元素值有直接影响。多相复合材料的协同效应为半电池和全电池带来了良好的性能。其中,初始容量最高,为 208.7 mAh g-1,容量衰减 57%,且随 La 含量的增加而减小。使用电化学预odiated 硬碳阳极构建了全电池,在钠离子电池研究中获得了 184.5 mAh g-1 的良好容量值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Energy technology
Energy technology ENERGY & FUELS-
CiteScore
7.00
自引率
5.30%
发文量
0
审稿时长
1.3 months
期刊介绍: Energy Technology provides a forum for researchers and engineers from all relevant disciplines concerned with the generation, conversion, storage, and distribution of energy. This new journal shall publish articles covering all technical aspects of energy process engineering from different perspectives, e.g., new concepts of energy generation and conversion; design, operation, control, and optimization of processes for energy generation (e.g., carbon capture) and conversion of energy carriers; improvement of existing processes; combination of single components to systems for energy generation; design of systems for energy storage; production processes of fuels, e.g., hydrogen, electricity, petroleum, biobased fuels; concepts and design of devices for energy distribution.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信