{"title":"Millimeter wave–3D massive MIMO: Deep prior-aided graph neural network combining with hierarchical residual learning for beamspace channel estimation","authors":"Haridoss Sudarsan, Krishnakumar Mahendran, Srinivasan Rathika, Subburaj Nagan Yoga Ananth","doi":"10.1002/dac.5918","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Millimeter Wave (mmWave) communication has emerged as a transformative technology at the forefront of wireless communication. One of the key challenges in harnessing the potential of mmWave technology is overcoming the increased susceptibility to propagation losses and environmental obstacles. To address these challenges, Three-Dimensional Massive Multiple-Input Multiple-Output (3D Massive MIMO) systems have gained traction. The 3D aspect extends this concept by considering the elevation dimension, allowing for enhanced spatial resolution and coverage. Accurate estimation of the channel in 3D Massive MIMO scenarios is particularly challenging because of the complex propagation characteristics of mmWave signals. This paper introduces an efficient-Aided Graph Neural Network Combining with Hierarchical Residual Learning (DPrGNN-HrResNetL), designed specifically for beamspace Channel Estimation (CE)in mmWave-Massive MIMO environments. The proposed model leverages deep priors and GNN mechanisms to enhance the extraction of spatial features, while hierarchical residual connections facilitate effective information flow through the network. DPrGNN enables the model to capture and understand complex spatial relationships among different antenna elements. The incorporation of deep priors provides a mechanism for leveraging prior knowledge about channel characteristics. This enhances the efficiency of the learning process, allowing the model to learn and adapt more effectively. The integration of hierarchical residual connections facilitates effective information flow through the network. This is particularly important for modeling complex dependencies within the beamspace channel data, enhancing the learning capacity of the network. The performance of the DPrGNN-HrResNetL model is evaluated across a range of Signal-to-Noise Ratios (SNRs), utilizing metrics such as Normalized Mean Squared Error (NMSE) to measure the accuracy of the estimation. The outcomes underscore the resilience and efficacy of the DPrGNN-HrResNetL approach in achieving precise CE within demanding mmWave scenarios.</p>\n </div>","PeriodicalId":13946,"journal":{"name":"International Journal of Communication Systems","volume":"37 17","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Communication Systems","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/dac.5918","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Millimeter Wave (mmWave) communication has emerged as a transformative technology at the forefront of wireless communication. One of the key challenges in harnessing the potential of mmWave technology is overcoming the increased susceptibility to propagation losses and environmental obstacles. To address these challenges, Three-Dimensional Massive Multiple-Input Multiple-Output (3D Massive MIMO) systems have gained traction. The 3D aspect extends this concept by considering the elevation dimension, allowing for enhanced spatial resolution and coverage. Accurate estimation of the channel in 3D Massive MIMO scenarios is particularly challenging because of the complex propagation characteristics of mmWave signals. This paper introduces an efficient-Aided Graph Neural Network Combining with Hierarchical Residual Learning (DPrGNN-HrResNetL), designed specifically for beamspace Channel Estimation (CE)in mmWave-Massive MIMO environments. The proposed model leverages deep priors and GNN mechanisms to enhance the extraction of spatial features, while hierarchical residual connections facilitate effective information flow through the network. DPrGNN enables the model to capture and understand complex spatial relationships among different antenna elements. The incorporation of deep priors provides a mechanism for leveraging prior knowledge about channel characteristics. This enhances the efficiency of the learning process, allowing the model to learn and adapt more effectively. The integration of hierarchical residual connections facilitates effective information flow through the network. This is particularly important for modeling complex dependencies within the beamspace channel data, enhancing the learning capacity of the network. The performance of the DPrGNN-HrResNetL model is evaluated across a range of Signal-to-Noise Ratios (SNRs), utilizing metrics such as Normalized Mean Squared Error (NMSE) to measure the accuracy of the estimation. The outcomes underscore the resilience and efficacy of the DPrGNN-HrResNetL approach in achieving precise CE within demanding mmWave scenarios.
期刊介绍:
The International Journal of Communication Systems provides a forum for R&D, open to researchers from all types of institutions and organisations worldwide, aimed at the increasingly important area of communication technology. The Journal''s emphasis is particularly on the issues impacting behaviour at the system, service and management levels. Published twelve times a year, it provides coverage of advances that have a significant potential to impact the immense technical and commercial opportunities in the communications sector. The International Journal of Communication Systems strives to select a balance of contributions that promotes technical innovation allied to practical relevance across the range of system types and issues.
The Journal addresses both public communication systems (Telecommunication, mobile, Internet, and Cable TV) and private systems (Intranets, enterprise networks, LANs, MANs, WANs). The following key areas and issues are regularly covered:
-Transmission/Switching/Distribution technologies (ATM, SDH, TCP/IP, routers, DSL, cable modems, VoD, VoIP, WDM, etc.)
-System control, network/service management
-Network and Internet protocols and standards
-Client-server, distributed and Web-based communication systems
-Broadband and multimedia systems and applications, with a focus on increased service variety and interactivity
-Trials of advanced systems and services; their implementation and evaluation
-Novel concepts and improvements in technique; their theoretical basis and performance analysis using measurement/testing, modelling and simulation
-Performance evaluation issues and methods.