Environmental aging of reinforced polymer composite radome: reliability and performance investigation

IF 2.6 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Imran Haider, Iftikhar Hussain Gul, Shahid Aziz, Muhammad Iftikhar Faraz, Muhammad Ali Khan, Syed Husain Imran Jaffery, Dong-Won Jung
{"title":"Environmental aging of reinforced polymer composite radome: reliability and performance investigation","authors":"Imran Haider, Iftikhar Hussain Gul, Shahid Aziz, Muhammad Iftikhar Faraz, Muhammad Ali Khan, Syed Husain Imran Jaffery, Dong-Won Jung","doi":"10.3389/fmats.2024.1427541","DOIUrl":null,"url":null,"abstract":"In high-speed microelectronic communication, efficient and reliable radome-enclosed antenna performance is highly desired, which depends on consistent dielectric, mechanical properties, and low moisture absorption. The purpose of this study is to investigate the dielectric properties of fiber-polymer matrix composite (PMC) radome over wideband frequency and the impact of environmental aging on its performance. The dielectric constant (Ɛ<jats:sub>r</jats:sub>) of the SF/E<jats:sub>0.8</jats:sub> (80% fiber loading) composite radome material decreased to 4% from its original value (3.93), and dielectric loss (δ) was reduced by 11% from 0.035 (2–18 GHz), while SEM morphology indicated fair interface bonding. Employing the Hallberg and Peck model, equivalent aging time (5–25 years), upon accelerated environmental aging, Ɛ<jats:sub>r</jats:sub> was increased up to 3.69%, δ to 9.68%, and the moisture uptake in the SF/E<jats:sub>0.8</jats:sub> composite was increased from 1.13% to 1.67%, while tensile strength was retained up to 90.62% of its original value (147.83 MPa), compression strength up to 93.56% of its original value (388.54 MPa), flexural strength up to 85.44% of its original value (286.77 MPa), and interlaminar shear strength up to 77.66% of its original value (22.03 MPa), respectively. SF/E<jats:sub>0.8</jats:sub> radome-enclosed antenna gain was decreased to 1%, and the voltage standing wave ratio (VSWR) was increased to 1.04% from their original values. This gradual and small deviation of SF/E<jats:sub>x</jats:sub> composite properties and radome electrical performance over the extended aging time is referred to as reliable and effective for radome applications.","PeriodicalId":12524,"journal":{"name":"Frontiers in Materials","volume":"77 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3389/fmats.2024.1427541","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In high-speed microelectronic communication, efficient and reliable radome-enclosed antenna performance is highly desired, which depends on consistent dielectric, mechanical properties, and low moisture absorption. The purpose of this study is to investigate the dielectric properties of fiber-polymer matrix composite (PMC) radome over wideband frequency and the impact of environmental aging on its performance. The dielectric constant (Ɛr) of the SF/E0.8 (80% fiber loading) composite radome material decreased to 4% from its original value (3.93), and dielectric loss (δ) was reduced by 11% from 0.035 (2–18 GHz), while SEM morphology indicated fair interface bonding. Employing the Hallberg and Peck model, equivalent aging time (5–25 years), upon accelerated environmental aging, Ɛr was increased up to 3.69%, δ to 9.68%, and the moisture uptake in the SF/E0.8 composite was increased from 1.13% to 1.67%, while tensile strength was retained up to 90.62% of its original value (147.83 MPa), compression strength up to 93.56% of its original value (388.54 MPa), flexural strength up to 85.44% of its original value (286.77 MPa), and interlaminar shear strength up to 77.66% of its original value (22.03 MPa), respectively. SF/E0.8 radome-enclosed antenna gain was decreased to 1%, and the voltage standing wave ratio (VSWR) was increased to 1.04% from their original values. This gradual and small deviation of SF/Ex composite properties and radome electrical performance over the extended aging time is referred to as reliable and effective for radome applications.
增强聚合物复合材料雷达罩的环境老化:可靠性和性能调查
在高速微电子通信中,高效可靠的天线罩封闭天线性能非常重要,这取决于稳定的介电性能、机械性能和低吸湿性。本研究的目的是研究纤维-聚合物基复合材料(PMC)天线罩在宽带频率下的介电性能以及环境老化对其性能的影响。SF/E0.8 (80% 纤维负载) 复合天线罩材料的介电常数 (Ɛr)从原始值 (3.93) 降低到 4%,介电损耗 (δ) 从 0.035 (2-18 GHz) 降低了 11%,而 SEM 形貌表明界面结合良好。采用 Hallberg 和 Peck 模型,等效老化时间(5-25 年)、加速环境老化后,Ɛr 增加到 3.69%,δ 增加到 9.68%,SF/E0.8 复合材料的吸湿率从 1.13% 增加到 1.67%,而拉伸强度保持在原始值的 90.62% (147.83 兆帕),压缩强度达到原始值的 93.56% (388.54 兆帕),弯曲强度达到原始值的 85.44% (286.77 兆帕),层间剪切强度达到原始值的 77.66% (22.03 兆帕)。SF/E0.8 雷达天线增益下降到 1%,电压驻波比 (VSWR) 从原始值增加到 1.04%。这种 SF/Ex 复合材料性能和雷达罩电气性能在延长的老化时间内逐渐出现的微小偏差被认为是雷达罩应用中可靠和有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Frontiers in Materials
Frontiers in Materials Materials Science-Materials Science (miscellaneous)
CiteScore
4.80
自引率
6.20%
发文量
749
审稿时长
12 weeks
期刊介绍: Frontiers in Materials is a high visibility journal publishing rigorously peer-reviewed research across the entire breadth of materials science and engineering. This interdisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers across academia and industry, and the public worldwide. Founded upon a research community driven approach, this Journal provides a balanced and comprehensive offering of Specialty Sections, each of which has a dedicated Editorial Board of leading experts in the respective field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信