Co-evolution genetic programming-based hyper-heuristics for the stochastic project scheduling problem with resource transfer and idle costs

IF 8.2 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Haohua Zhang , Lubo Li , Sijun Bai , Jingwen Zhang
{"title":"Co-evolution genetic programming-based hyper-heuristics for the stochastic project scheduling problem with resource transfer and idle costs","authors":"Haohua Zhang ,&nbsp;Lubo Li ,&nbsp;Sijun Bai ,&nbsp;Jingwen Zhang","doi":"10.1016/j.swevo.2024.101678","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we study the stochastic resource-constrained project scheduling problem with transfer and idle costs (SRCPSP-TIC) under uncertain environments, where the resource transfer and idle take time and costs. Priority rule (PR) based heuristics are the most commonly used approaches for project scheduling under uncertain environments due to their simplicity and efficiency. For PR-based heuristics of the SRCPSP-TIC, activity priority rules (APRs) and transfer priority rules (TPRs) are necessary to decide the activity sequence and resource transfer. Traditionally, APRs and TPRs need to be manually designed, which is time-consuming and difficult to adapt to different scheduling scenarios. Therefore, based on two individual representation methods, we propose two co-evolution genetic programming (CGP) based hyper-heuristics to evolve APRs and TPRs automatically. Furthermore, a fitness function surrogate-assisted method and a transfer learning mechanism are designed to improve the efficiency and solution quality of the CGP. Based on the instances with different stochastic activity duration distributions, we test the performance of different CGP-based hyper-heuristics and compare the evolved PRs with the classical PRs to demonstrate the effectiveness of evolved PRs. Experimental results show that the proposed algorithms can automatically evolve efficient PRs for the SRCPSP-TIC.</p></div>","PeriodicalId":48682,"journal":{"name":"Swarm and Evolutionary Computation","volume":"90 ","pages":"Article 101678"},"PeriodicalIF":8.2000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Swarm and Evolutionary Computation","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2210650224002165","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we study the stochastic resource-constrained project scheduling problem with transfer and idle costs (SRCPSP-TIC) under uncertain environments, where the resource transfer and idle take time and costs. Priority rule (PR) based heuristics are the most commonly used approaches for project scheduling under uncertain environments due to their simplicity and efficiency. For PR-based heuristics of the SRCPSP-TIC, activity priority rules (APRs) and transfer priority rules (TPRs) are necessary to decide the activity sequence and resource transfer. Traditionally, APRs and TPRs need to be manually designed, which is time-consuming and difficult to adapt to different scheduling scenarios. Therefore, based on two individual representation methods, we propose two co-evolution genetic programming (CGP) based hyper-heuristics to evolve APRs and TPRs automatically. Furthermore, a fitness function surrogate-assisted method and a transfer learning mechanism are designed to improve the efficiency and solution quality of the CGP. Based on the instances with different stochastic activity duration distributions, we test the performance of different CGP-based hyper-heuristics and compare the evolved PRs with the classical PRs to demonstrate the effectiveness of evolved PRs. Experimental results show that the proposed algorithms can automatically evolve efficient PRs for the SRCPSP-TIC.

基于协同进化遗传编程的超启发式算法,用于具有资源转移和闲置成本的随机项目调度问题
本文研究了不确定环境下带有转移和闲置成本的随机资源受限项目调度问题(SRCPSP-TIC),其中资源的转移和闲置需要时间和成本。基于优先级规则(PR)的启发式方法因其简单高效而成为不确定环境下最常用的项目调度方法。对于基于 PR 的 SRCPSP-TIC 启发式算法,活动优先规则(APR)和资源转移优先规则(TPR)是决定活动顺序和资源转移的必要条件。传统上,活动优先规则和转移优先规则需要人工设计,既费时又难以适应不同的调度场景。因此,我们在两种单独表示方法的基础上,提出了两种基于共同进化遗传编程(CGP)的超启发式方法,以自动演化 APR 和 TPR。此外,为了提高 CGP 的效率和求解质量,我们还设计了一种适合度函数辅助方法和一种迁移学习机制。基于不同随机活动持续时间分布的实例,我们测试了不同基于 CGP 的超启发式算法的性能,并将进化 PR 与经典 PR 进行了比较,以证明进化 PR 的有效性。实验结果表明,所提出的算法可以自动为 SRCPSP-TIC 演化出高效的 PR。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Swarm and Evolutionary Computation
Swarm and Evolutionary Computation COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCEC-COMPUTER SCIENCE, THEORY & METHODS
CiteScore
16.00
自引率
12.00%
发文量
169
期刊介绍: Swarm and Evolutionary Computation is a pioneering peer-reviewed journal focused on the latest research and advancements in nature-inspired intelligent computation using swarm and evolutionary algorithms. It covers theoretical, experimental, and practical aspects of these paradigms and their hybrids, promoting interdisciplinary research. The journal prioritizes the publication of high-quality, original articles that push the boundaries of evolutionary computation and swarm intelligence. Additionally, it welcomes survey papers on current topics and novel applications. Topics of interest include but are not limited to: Genetic Algorithms, and Genetic Programming, Evolution Strategies, and Evolutionary Programming, Differential Evolution, Artificial Immune Systems, Particle Swarms, Ant Colony, Bacterial Foraging, Artificial Bees, Fireflies Algorithm, Harmony Search, Artificial Life, Digital Organisms, Estimation of Distribution Algorithms, Stochastic Diffusion Search, Quantum Computing, Nano Computing, Membrane Computing, Human-centric Computing, Hybridization of Algorithms, Memetic Computing, Autonomic Computing, Self-organizing systems, Combinatorial, Discrete, Binary, Constrained, Multi-objective, Multi-modal, Dynamic, and Large-scale Optimization.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信