{"title":"Formulating approximation error as noise in surrogate-assisted multi-objective evolutionary algorithm","authors":"Nan Zheng , Handing Wang , Jialin Liu","doi":"10.1016/j.swevo.2024.101666","DOIUrl":null,"url":null,"abstract":"<div><p>Many real multi-objective optimization problems with 20-50 decision variables often have only a small number of function evaluations available, because of their heavy time/money burden. Therefore, surrogate models are often utilized as alternatives for expensive function evaluations. However, the approximation error of the surrogate model is inevitable compared to the real function evaluation. The approximation error has a similar impact on the algorithm as noise, i.e., different optimization stages suffer from various impacts. Therefore, the current optimization stage can be indirectly detected via measuring the impact of the noise formulated by the approximation error. In addition, the rising dimension of the search space leads to an increase in the approximation errors of the surrogate models, which poses a huge challenge for existing surrogate-assisted multi-objective evolutionary algorithms. In this work, we propose a stage-adaptive surrogate-assisted multi-objective evolutionary algorithm to solve the medium-scale optimization problems. In the proposed algorithm, the ensemble model consisting of the latest and historical models is used as the surrogate model, on the basis of which a set of potential candidates can be discovered. Then, a stage-adaptive infill sampling strategy selects the most suitable sampling strategy by analyzing the demand of the current optimization stage on convergence, diversity, model accuracy to sample from the candidates. As for the current optimization stage, it is detected by a noise impact indicator, where the approximation errors of surrogate models are formulated as noise. The experimental results on a series of medium-scale expensive test problems demonstrate the superiority of the proposed algorithm over six state-of-the-art compared algorithms.</p></div>","PeriodicalId":48682,"journal":{"name":"Swarm and Evolutionary Computation","volume":"90 ","pages":"Article 101666"},"PeriodicalIF":8.2000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Swarm and Evolutionary Computation","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2210650224002049","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Many real multi-objective optimization problems with 20-50 decision variables often have only a small number of function evaluations available, because of their heavy time/money burden. Therefore, surrogate models are often utilized as alternatives for expensive function evaluations. However, the approximation error of the surrogate model is inevitable compared to the real function evaluation. The approximation error has a similar impact on the algorithm as noise, i.e., different optimization stages suffer from various impacts. Therefore, the current optimization stage can be indirectly detected via measuring the impact of the noise formulated by the approximation error. In addition, the rising dimension of the search space leads to an increase in the approximation errors of the surrogate models, which poses a huge challenge for existing surrogate-assisted multi-objective evolutionary algorithms. In this work, we propose a stage-adaptive surrogate-assisted multi-objective evolutionary algorithm to solve the medium-scale optimization problems. In the proposed algorithm, the ensemble model consisting of the latest and historical models is used as the surrogate model, on the basis of which a set of potential candidates can be discovered. Then, a stage-adaptive infill sampling strategy selects the most suitable sampling strategy by analyzing the demand of the current optimization stage on convergence, diversity, model accuracy to sample from the candidates. As for the current optimization stage, it is detected by a noise impact indicator, where the approximation errors of surrogate models are formulated as noise. The experimental results on a series of medium-scale expensive test problems demonstrate the superiority of the proposed algorithm over six state-of-the-art compared algorithms.
期刊介绍:
Swarm and Evolutionary Computation is a pioneering peer-reviewed journal focused on the latest research and advancements in nature-inspired intelligent computation using swarm and evolutionary algorithms. It covers theoretical, experimental, and practical aspects of these paradigms and their hybrids, promoting interdisciplinary research. The journal prioritizes the publication of high-quality, original articles that push the boundaries of evolutionary computation and swarm intelligence. Additionally, it welcomes survey papers on current topics and novel applications. Topics of interest include but are not limited to: Genetic Algorithms, and Genetic Programming, Evolution Strategies, and Evolutionary Programming, Differential Evolution, Artificial Immune Systems, Particle Swarms, Ant Colony, Bacterial Foraging, Artificial Bees, Fireflies Algorithm, Harmony Search, Artificial Life, Digital Organisms, Estimation of Distribution Algorithms, Stochastic Diffusion Search, Quantum Computing, Nano Computing, Membrane Computing, Human-centric Computing, Hybridization of Algorithms, Memetic Computing, Autonomic Computing, Self-organizing systems, Combinatorial, Discrete, Binary, Constrained, Multi-objective, Multi-modal, Dynamic, and Large-scale Optimization.