Theoretical and simulation analysis for R290 leakage from split-type air conditioners

IF 3.5 2区 工程技术 Q1 ENGINEERING, MECHANICAL
{"title":"Theoretical and simulation analysis for R290 leakage from split-type air conditioners","authors":"","doi":"10.1016/j.ijrefrig.2024.06.025","DOIUrl":null,"url":null,"abstract":"<div><p>Propane (R290) is a promising refrigerant for split-type household air conditioners with the advantages of energy saving, environmentally friendliness and low charge. Nevertheless, the large scale use of R290 has been hindered by its high flammability. The potential fire hazards can be relieved by reducing R290 releasable charge, and numerous methods have been put forward. In the authors’ previous papers, the method of refrigerant pump-down was proposed and a mathematical model of critical releasable charge (CRC, ignition threshold of leakage) was developed by dimensional analysis, but it is difficult to reflect the actual physical process of R290 dispersion. To reveal the leakage and dispersion mechanism of R290, a new numerical model of CRC is developed based on mechanism analysis in this work, in which the turbulent jet model, Coanda effect and dimensional analysis are involved. The predicted CRCs agree well with experimental and simulated data. Besides, the influence of indoor air speed with its direction parallel to the IDU panel on R290 concentration field is investigated by computational fluid dynamics (CFD) under different releasable charges. It is found that there is a transition value of air speed, below which the fire hazards decrease greatly with the increase of air speed, on the contrary, when the air speed is above the transition value, raising air speed has little impact on fire hazards.</p></div>","PeriodicalId":14274,"journal":{"name":"International Journal of Refrigeration-revue Internationale Du Froid","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Refrigeration-revue Internationale Du Froid","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0140700724002287","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Propane (R290) is a promising refrigerant for split-type household air conditioners with the advantages of energy saving, environmentally friendliness and low charge. Nevertheless, the large scale use of R290 has been hindered by its high flammability. The potential fire hazards can be relieved by reducing R290 releasable charge, and numerous methods have been put forward. In the authors’ previous papers, the method of refrigerant pump-down was proposed and a mathematical model of critical releasable charge (CRC, ignition threshold of leakage) was developed by dimensional analysis, but it is difficult to reflect the actual physical process of R290 dispersion. To reveal the leakage and dispersion mechanism of R290, a new numerical model of CRC is developed based on mechanism analysis in this work, in which the turbulent jet model, Coanda effect and dimensional analysis are involved. The predicted CRCs agree well with experimental and simulated data. Besides, the influence of indoor air speed with its direction parallel to the IDU panel on R290 concentration field is investigated by computational fluid dynamics (CFD) under different releasable charges. It is found that there is a transition value of air speed, below which the fire hazards decrease greatly with the increase of air speed, on the contrary, when the air speed is above the transition value, raising air speed has little impact on fire hazards.

分体式空调 R290 泄漏的理论和模拟分析
丙烷(R290)具有节能、环保和低充注量的优点,是一种很有前途的分体式家用空调制冷剂。然而,R290 的高易燃性阻碍了它的大规模使用。降低 R290 的可释放电荷可以缓解潜在的火灾隐患,目前已提出了许多方法。作者在之前的论文中提出了制冷剂泵降法,并通过尺寸分析建立了临界可释放充注量(CRC,泄漏点火阈值)的数学模型,但难以反映 R290 扩散的实际物理过程。为了揭示 R290 的泄漏和弥散机理,本文在机理分析的基础上建立了一个新的 CRC 数值模型,其中涉及湍流射流模型、科安达效应和尺寸分析。预测的 CRC 与实验和模拟数据吻合良好。此外,还通过计算流体动力学(CFD)研究了在不同可释放电荷条件下,平行于 IDU 面板的室内空气速度对 R290 浓度场的影响。结果发现,风速存在一个过渡值,低于该值时,火灾危险性随风速的增加而大大降低;相反,当风速高于过渡值时,提高风速对火灾危险性的影响很小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.30
自引率
12.80%
发文量
363
审稿时长
3.7 months
期刊介绍: The International Journal of Refrigeration is published for the International Institute of Refrigeration (IIR) by Elsevier. It is essential reading for all those wishing to keep abreast of research and industrial news in refrigeration, air conditioning and associated fields. This is particularly important in these times of rapid introduction of alternative refrigerants and the emergence of new technology. The journal has published special issues on alternative refrigerants and novel topics in the field of boiling, condensation, heat pumps, food refrigeration, carbon dioxide, ammonia, hydrocarbons, magnetic refrigeration at room temperature, sorptive cooling, phase change materials and slurries, ejector technology, compressors, and solar cooling. As well as original research papers the International Journal of Refrigeration also includes review articles, papers presented at IIR conferences, short reports and letters describing preliminary results and experimental details, and letters to the Editor on recent areas of discussion and controversy. Other features include forthcoming events, conference reports and book reviews. Papers are published in either English or French with the IIR news section in both languages.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信