{"title":"Sorption kinetics of salt-in-porous-matrix composites: The effect of expanded natural graphite on cooling power","authors":"","doi":"10.1016/j.ijrefrig.2024.07.004","DOIUrl":null,"url":null,"abstract":"<div><p>Sorption heat transformers and thermal energy storage systems are emerging technologies that utilize and store low-grade waste heat for heating and cooling applications. The performance of sorption systems is not only affected by systems’ operating conditions, and overall systems’ design but also by sorption material or composite parameters such as thermal diffusivity, composition, and pore structure, among others. In this study, CaCl<sub>2</sub>-based salt-in-porous-matrix composites of different compositions and coating thicknesses were synthesized. During synthesis, salt to silica gel and polyvinyl alcohol to silica gel ratios were fixed and the thermal additive (expanded natural graphite) to silica gel ratio was varied with care from 0 to 0.26 (or 0 to 20.5 wt.%, additive to silica gel ratio). The thickness of samples varied from 2.3 to 8.3 ± 0.1 mm. The composites were characterized by a transient plane source (thermal conductivity and thermal diffusivity), nitrogen adsorption porosimetry (specific surface area and total pore volume), and thermogravimetric sorption analysis (water sorption equilibrium) methods. A custom-built gravimetric large pressure jump (G-LPJ) testbed was used to study water sorption kinetics (water uptake vs. time) for selected samples. The thermal conductivity and diffusivity of the studied composite samples have shown significant enhancements, e.g., 240% (0.11 W/(m·K) vs. 0.37 W/(m·K)) and 310% (0.21 mm<sup>2</sup>/s vs. 0.87 mm<sup>2</sup>/s), respectively, by adding 12.5 wt.% expanded natural graphite (additive to silica gel ratio is 0.14) as a thermally conductive additive (additive to silica gel ratio) because of thermal percolation effect. This ratio of expanded natural graphite to silica gel was found to be optimal for studied composition. The results indicate that sorption composites with higher thermal diffusivity offer notably higher specific cooling power and improved sorption kinetics, compared to the composites without expanded natural graphite of the same thickness (850 W/kg vs. 480 W/kg at 70% water conversion for samples with thickness of 5.3 mm).</p></div>","PeriodicalId":14274,"journal":{"name":"International Journal of Refrigeration-revue Internationale Du Froid","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0140700724002342/pdfft?md5=38615de28bc3a619c7c47a39cde43574&pid=1-s2.0-S0140700724002342-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Refrigeration-revue Internationale Du Froid","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0140700724002342","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Sorption heat transformers and thermal energy storage systems are emerging technologies that utilize and store low-grade waste heat for heating and cooling applications. The performance of sorption systems is not only affected by systems’ operating conditions, and overall systems’ design but also by sorption material or composite parameters such as thermal diffusivity, composition, and pore structure, among others. In this study, CaCl2-based salt-in-porous-matrix composites of different compositions and coating thicknesses were synthesized. During synthesis, salt to silica gel and polyvinyl alcohol to silica gel ratios were fixed and the thermal additive (expanded natural graphite) to silica gel ratio was varied with care from 0 to 0.26 (or 0 to 20.5 wt.%, additive to silica gel ratio). The thickness of samples varied from 2.3 to 8.3 ± 0.1 mm. The composites were characterized by a transient plane source (thermal conductivity and thermal diffusivity), nitrogen adsorption porosimetry (specific surface area and total pore volume), and thermogravimetric sorption analysis (water sorption equilibrium) methods. A custom-built gravimetric large pressure jump (G-LPJ) testbed was used to study water sorption kinetics (water uptake vs. time) for selected samples. The thermal conductivity and diffusivity of the studied composite samples have shown significant enhancements, e.g., 240% (0.11 W/(m·K) vs. 0.37 W/(m·K)) and 310% (0.21 mm2/s vs. 0.87 mm2/s), respectively, by adding 12.5 wt.% expanded natural graphite (additive to silica gel ratio is 0.14) as a thermally conductive additive (additive to silica gel ratio) because of thermal percolation effect. This ratio of expanded natural graphite to silica gel was found to be optimal for studied composition. The results indicate that sorption composites with higher thermal diffusivity offer notably higher specific cooling power and improved sorption kinetics, compared to the composites without expanded natural graphite of the same thickness (850 W/kg vs. 480 W/kg at 70% water conversion for samples with thickness of 5.3 mm).
期刊介绍:
The International Journal of Refrigeration is published for the International Institute of Refrigeration (IIR) by Elsevier. It is essential reading for all those wishing to keep abreast of research and industrial news in refrigeration, air conditioning and associated fields. This is particularly important in these times of rapid introduction of alternative refrigerants and the emergence of new technology. The journal has published special issues on alternative refrigerants and novel topics in the field of boiling, condensation, heat pumps, food refrigeration, carbon dioxide, ammonia, hydrocarbons, magnetic refrigeration at room temperature, sorptive cooling, phase change materials and slurries, ejector technology, compressors, and solar cooling.
As well as original research papers the International Journal of Refrigeration also includes review articles, papers presented at IIR conferences, short reports and letters describing preliminary results and experimental details, and letters to the Editor on recent areas of discussion and controversy. Other features include forthcoming events, conference reports and book reviews.
Papers are published in either English or French with the IIR news section in both languages.