Khushboo Matwani, Jasmine Cornish, Erika Alden DeBenedictis, Gabriella T. Heller
{"title":"Micromolar fluoride contamination arising from glass NMR tubes and a simple solution for biomolecular applications","authors":"Khushboo Matwani, Jasmine Cornish, Erika Alden DeBenedictis, Gabriella T. Heller","doi":"10.1007/s10858-024-00442-x","DOIUrl":null,"url":null,"abstract":"<div><p>Fluorine (<sup>19</sup>F) NMR is emerging as an invaluable analytical technique in chemistry, biochemistry, structural biology, material science, drug discovery, and medicine, especially due to the inherent rarity of naturally occurring fluorine in biological, organic, and inorganic compounds. Here, we revisit the under-reported problem of fluoride leaching from new and unused glass NMR tubes. We characterised the leaching of free fluoride from various types of new and unused glass NMR tubes over the course of several hours and quantify this contaminant to be at micromolar concentrations for typical NMR sample volumes across multiple glass types and brands. We find that this artefact is undetectable for samples prepared in quartz NMR tubes within the timeframes of our experiments. We also observed that pre-soaking new glass NMR tubes combined with rinsing removes this contamination below micromolar levels. Given the increasing popularity of <sup>19</sup>F NMR across a wide range of fields, increasing popularity of single-use screening tubes, the long collection times required for relaxation studies and samples of low concentrations, and the importance of avoiding contamination in all NMR experiments, we anticipate that our simple solution will be useful to biomolecular NMR spectroscopists.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10858-024-00442-x.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s10858-024-00442-x","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Fluorine (19F) NMR is emerging as an invaluable analytical technique in chemistry, biochemistry, structural biology, material science, drug discovery, and medicine, especially due to the inherent rarity of naturally occurring fluorine in biological, organic, and inorganic compounds. Here, we revisit the under-reported problem of fluoride leaching from new and unused glass NMR tubes. We characterised the leaching of free fluoride from various types of new and unused glass NMR tubes over the course of several hours and quantify this contaminant to be at micromolar concentrations for typical NMR sample volumes across multiple glass types and brands. We find that this artefact is undetectable for samples prepared in quartz NMR tubes within the timeframes of our experiments. We also observed that pre-soaking new glass NMR tubes combined with rinsing removes this contamination below micromolar levels. Given the increasing popularity of 19F NMR across a wide range of fields, increasing popularity of single-use screening tubes, the long collection times required for relaxation studies and samples of low concentrations, and the importance of avoiding contamination in all NMR experiments, we anticipate that our simple solution will be useful to biomolecular NMR spectroscopists.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.