Li-doped (K, Na)NbO3 particles with high crystallinity and chemical stability synthesized by molten salt method

IF 4.2 2区 工程技术 Q2 ENGINEERING, CHEMICAL
Liangliang Liu , Qiang Zhang , Yan Wang , Zezheng Yan , Zhaoping Hou
{"title":"Li-doped (K, Na)NbO3 particles with high crystallinity and chemical stability synthesized by molten salt method","authors":"Liangliang Liu ,&nbsp;Qiang Zhang ,&nbsp;Yan Wang ,&nbsp;Zezheng Yan ,&nbsp;Zhaoping Hou","doi":"10.1016/j.apt.2024.104580","DOIUrl":null,"url":null,"abstract":"<div><p>The piezoelectric properties of multi-element doped (K, Na)NbO<sub>3</sub> ceramics are close to that of lead-based systems and expected to become environmentally friendly substitutes. To reduce the types of doped elements and achieve the repeated preparation of high-performance ceramics, we synthesized the Li-doped (K, Na)NbO<sub>3</sub> particles with high crystallinity and chemical stability by molten salt method. Different from the traditional method, the microcrystals were obtained by recrystallization of the Li-doped (K, Na)NbO<sub>3</sub> powder synthesized by solid state reaction in molten KCl and NaCl salts. The effects of the calcination temperature on phase structure, size and morphology of microcrystals were investigated. It was found that doping of Li<sup>+</sup> could stabilize the crystal structure of (K, Na)NbO<sub>3</sub> so that no other heterophase was formed in the molten salts. The crystallization growth of microcrystals was controlled by oriented attachment mechanism. The thermal hysteresis loops of dielectric properties confirmed that the synthesized microcrystals had high chemical stability. This work will provide ideal raw materials for the development of high performance potassium sodium niobate ceramics.</p></div>","PeriodicalId":7232,"journal":{"name":"Advanced Powder Technology","volume":null,"pages":null},"PeriodicalIF":4.2000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Powder Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921883124002565","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The piezoelectric properties of multi-element doped (K, Na)NbO3 ceramics are close to that of lead-based systems and expected to become environmentally friendly substitutes. To reduce the types of doped elements and achieve the repeated preparation of high-performance ceramics, we synthesized the Li-doped (K, Na)NbO3 particles with high crystallinity and chemical stability by molten salt method. Different from the traditional method, the microcrystals were obtained by recrystallization of the Li-doped (K, Na)NbO3 powder synthesized by solid state reaction in molten KCl and NaCl salts. The effects of the calcination temperature on phase structure, size and morphology of microcrystals were investigated. It was found that doping of Li+ could stabilize the crystal structure of (K, Na)NbO3 so that no other heterophase was formed in the molten salts. The crystallization growth of microcrystals was controlled by oriented attachment mechanism. The thermal hysteresis loops of dielectric properties confirmed that the synthesized microcrystals had high chemical stability. This work will provide ideal raw materials for the development of high performance potassium sodium niobate ceramics.

Abstract Image

用熔盐法合成具有高结晶度和化学稳定性的掺锂(K,Na)NbO3 粒子
多元素掺杂(K,Na)NbO 陶瓷的压电特性接近铅基系统,有望成为环境友好型替代品。为了减少掺杂元素的种类,实现高性能陶瓷的重复制备,我们采用熔盐法合成了具有高结晶度和化学稳定性的锂掺杂(K,Na)NbO 颗粒。与传统方法不同的是,掺锂的(K,Na)NbO粉末是通过固态反应在熔融 KCl 和 NaCl 盐中重结晶得到的微晶。研究了煅烧温度对微晶的相结构、尺寸和形态的影响。研究发现,掺入锂能稳定(K,Na)NbO 的晶体结构,因此在熔盐中不会形成其他异相。微晶的结晶生长受定向附着机制控制。介电性能的热滞后环证实合成的微晶具有很高的化学稳定性。这项工作将为开发高性能铌酸钾钠陶瓷提供理想的原材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Powder Technology
Advanced Powder Technology 工程技术-工程:化工
CiteScore
9.50
自引率
7.70%
发文量
424
审稿时长
55 days
期刊介绍: The aim of Advanced Powder Technology is to meet the demand for an international journal that integrates all aspects of science and technology research on powder and particulate materials. The journal fulfills this purpose by publishing original research papers, rapid communications, reviews, and translated articles by prominent researchers worldwide. The editorial work of Advanced Powder Technology, which was founded as the International Journal of the Society of Powder Technology, Japan, is now shared by distinguished board members, who operate in a unique framework designed to respond to the increasing global demand for articles on not only powder and particles, but also on various materials produced from them. Advanced Powder Technology covers various areas, but a discussion of powder and particles is required in articles. Topics include: Production of powder and particulate materials in gases and liquids(nanoparticles, fine ceramics, pharmaceuticals, novel functional materials, etc.); Aerosol and colloidal processing; Powder and particle characterization; Dynamics and phenomena; Calculation and simulation (CFD, DEM, Monte Carlo method, population balance, etc.); Measurement and control of powder processes; Particle modification; Comminution; Powder handling and operations (storage, transport, granulation, separation, fluidization, etc.)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信