Design and Analysis of a Plasmonic Metasurface-Based Graphene Sensor for Highly Sensitive and Label-Free Detection of COVID-19 Biomarkers

IF 3.3 4区 物理与天体物理 Q2 CHEMISTRY, PHYSICAL
Nagarajan P., Jacob Wekalao, Ashokkumar N., Shobhit K. Patel
{"title":"Design and Analysis of a Plasmonic Metasurface-Based Graphene Sensor for Highly Sensitive and Label-Free Detection of COVID-19 Biomarkers","authors":"Nagarajan P., Jacob Wekalao, Ashokkumar N., Shobhit K. Patel","doi":"10.1007/s11468-024-02442-x","DOIUrl":null,"url":null,"abstract":"<p>This research presents plasmonic metasurface-based graphene sensor for highly sensitive and label-free detection of COVID-19 biomarkers. The proposed sensor structure integrates graphene with specially engineered metasurface resonators for the detection of SARS-CoV-2 biomarkers through analysis of terahertz spectroscopic signatures. Finite element method simulations were performed to optimize the sensor design, including resonator dimensions, angle of incidence, and graphene chemical potential. The optimized sensor demonstrates a maximum sensitivity of 400 GHzRIU<sup>−1</sup>, a figure of merit of 0.224 RIU<sup>−1</sup>, a quality factor of 7.942, and a detection limit of 0.465 RIU. Electric field distribution analysis provides insights into the sensor’s plasmonic modes and light-matter interactions. The sensor also shows potential for 2-bit encoding applications. Compared to existing designs, the proposed sensor exhibits superior performance in key metrics like sensitivity among others. This plasmonic metasurface approach presents a promising platform for rapid, sensitive, and specific detection of SARS-CoV-2 and other viral biomarkers, with potential applications in advanced diagnostic tools and public health monitoring.</p>","PeriodicalId":736,"journal":{"name":"Plasmonics","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plasmonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1007/s11468-024-02442-x","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This research presents plasmonic metasurface-based graphene sensor for highly sensitive and label-free detection of COVID-19 biomarkers. The proposed sensor structure integrates graphene with specially engineered metasurface resonators for the detection of SARS-CoV-2 biomarkers through analysis of terahertz spectroscopic signatures. Finite element method simulations were performed to optimize the sensor design, including resonator dimensions, angle of incidence, and graphene chemical potential. The optimized sensor demonstrates a maximum sensitivity of 400 GHzRIU−1, a figure of merit of 0.224 RIU−1, a quality factor of 7.942, and a detection limit of 0.465 RIU. Electric field distribution analysis provides insights into the sensor’s plasmonic modes and light-matter interactions. The sensor also shows potential for 2-bit encoding applications. Compared to existing designs, the proposed sensor exhibits superior performance in key metrics like sensitivity among others. This plasmonic metasurface approach presents a promising platform for rapid, sensitive, and specific detection of SARS-CoV-2 and other viral biomarkers, with potential applications in advanced diagnostic tools and public health monitoring.

Abstract Image

设计和分析基于等离子体元表面的石墨烯传感器,实现 COVID-19 生物标记物的高灵敏度和无标记检测
本研究提出了基于等离子体元表面的石墨烯传感器,用于高灵敏度和无标记地检测 COVID-19 生物标记物。拟议的传感器结构将石墨烯与专门设计的元表面谐振器集成在一起,通过分析太赫兹光谱特征来检测 SARS-CoV-2 生物标记物。为优化传感器设计,包括谐振器尺寸、入射角和石墨烯化学势,进行了有限元法模拟。优化后的传感器最大灵敏度为 400 GHzRIU-1,优点系数为 0.224 RIU-1,品质因数为 7.942,探测极限为 0.465 RIU。电场分布分析有助于深入了解传感器的等离子模式和光物质相互作用。该传感器还显示出 2 位编码应用的潜力。与现有设计相比,所提出的传感器在灵敏度等关键指标上表现出更优越的性能。这种等离子体元表面方法为快速、灵敏、特异地检测 SARS-CoV-2 和其他病毒生物标记物提供了一个前景广阔的平台,有望应用于先进的诊断工具和公共卫生监测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Plasmonics
Plasmonics 工程技术-材料科学:综合
CiteScore
5.90
自引率
6.70%
发文量
164
审稿时长
2.1 months
期刊介绍: Plasmonics is an international forum for the publication of peer-reviewed leading-edge original articles that both advance and report our knowledge base and practice of the interactions of free-metal electrons, Plasmons. Topics covered include notable advances in the theory, Physics, and applications of surface plasmons in metals, to the rapidly emerging areas of nanotechnology, biophotonics, sensing, biochemistry and medicine. Topics, including the theory, synthesis and optical properties of noble metal nanostructures, patterned surfaces or materials, continuous or grated surfaces, devices, or wires for their multifarious applications are particularly welcome. Typical applications might include but are not limited to, surface enhanced spectroscopic properties, such as Raman scattering or fluorescence, as well developments in techniques such as surface plasmon resonance and near-field scanning optical microscopy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信