TC f Manipulation in AlScN Nanomechanical Resonators Using Dual-Mode Parametric Excitation

IF 2.5 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Yue Zheng;Seyyed Mojtaba Hassani Gangaraj;Jialin Wang;Mingyo Park;Yifan Fang;Azadeh Ansari
{"title":"TC f Manipulation in AlScN Nanomechanical Resonators Using Dual-Mode Parametric Excitation","authors":"Yue Zheng;Seyyed Mojtaba Hassani Gangaraj;Jialin Wang;Mingyo Park;Yifan Fang;Azadeh Ansari","doi":"10.1109/JMEMS.2024.3425798","DOIUrl":null,"url":null,"abstract":"In this work, we present resonator temperature coefficient of frequency (TCf) manipulation method by using the Duffing nonlinearities and non-dispersive coupling in two resonance modes within the same acoustic cavity. This temperature sensing technique leverages parametric pumping with a lock-in frequency, concurrently inducing signal and idler tones with opposite TCf signs. To demonstrate temperature sensing, aluminum scandium nitride (Al\n<inline-formula> <tex-math>$_{\\mathrm {1-x}}$ </tex-math></inline-formula>\nScxN) (x =0.2) drumhead nanomechanical resonators with two resonance modes of vibration (0,1) and (1,1) are fabricated, and the TCf trends of the driven resonance modes and parametrically induced modes are carefully studied. A signal TC\n<inline-formula> <tex-math>$f_{1}$ </tex-math></inline-formula>\n of −178 ppm/K and an idler TC\n<inline-formula> <tex-math>$f_{2}$ </tex-math></inline-formula>\n of +88 ppm/K with a linear trend is experimentally measured, marking the first positive TCf measured on resonators with a negative driven-mode TCf. A one-dimensional lumped parameter model is presented to elucidate the underlying mechanisms of generating opposite TCf signs, showing an excellent match with the measured data. Furthermore, we demonstrate direct TCf manipulations through beat frequency (\n<inline-formula> <tex-math>$f_{b}$ </tex-math></inline-formula>\n) modulation, using internal mixing of the induced signals and their harmonics, which can improve the temperature tunability of the resonant system. The presented work drastically simplifies the system-level integration of the resonant sensing systems by eliminating the need for interface electronics and dual feedback loops. [2024-0080]","PeriodicalId":16621,"journal":{"name":"Journal of Microelectromechanical Systems","volume":"33 5","pages":"620-630"},"PeriodicalIF":2.5000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Microelectromechanical Systems","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10609449/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, we present resonator temperature coefficient of frequency (TCf) manipulation method by using the Duffing nonlinearities and non-dispersive coupling in two resonance modes within the same acoustic cavity. This temperature sensing technique leverages parametric pumping with a lock-in frequency, concurrently inducing signal and idler tones with opposite TCf signs. To demonstrate temperature sensing, aluminum scandium nitride (Al $_{\mathrm {1-x}}$ ScxN) (x =0.2) drumhead nanomechanical resonators with two resonance modes of vibration (0,1) and (1,1) are fabricated, and the TCf trends of the driven resonance modes and parametrically induced modes are carefully studied. A signal TC $f_{1}$ of −178 ppm/K and an idler TC $f_{2}$ of +88 ppm/K with a linear trend is experimentally measured, marking the first positive TCf measured on resonators with a negative driven-mode TCf. A one-dimensional lumped parameter model is presented to elucidate the underlying mechanisms of generating opposite TCf signs, showing an excellent match with the measured data. Furthermore, we demonstrate direct TCf manipulations through beat frequency ( $f_{b}$ ) modulation, using internal mixing of the induced signals and their harmonics, which can improve the temperature tunability of the resonant system. The presented work drastically simplifies the system-level integration of the resonant sensing systems by eliminating the need for interface electronics and dual feedback loops. [2024-0080]
利用双模参数激励操纵 AlScN 纳米机械谐振器中的 TC$f$
在这项工作中,我们利用杜芬非线性和同一声腔内两个谐振模式的非分散耦合,提出了谐振器频率温度系数(TCf)操纵方法。这种温度传感技术利用锁定频率的参数泵浦,同时诱导出 TCf 符号相反的信号和惰音。为了演示温度传感,我们制作了具有两种共振振动模式(0,1)和(1,1)的氮化铝钪(Al $_{\mathrm {1-x}}$ ScxN)(x =0.2)鼓头纳米机械谐振器,并仔细研究了驱动共振模式和参数诱导模式的 TCf 趋势。实验测得的信号 TC $f_{1}$ 为 -178 ppm/K,惰性 TC $f_{2}$ 为 +88 ppm/K,且呈线性趋势,这是首次在具有负驱动模式 TCf 的谐振器上测得的正 TCf。 我们提出了一个一维整数参数模型,以阐明产生相反 TCf 符号的基本机制,该模型与测得的数据非常吻合。此外,我们还展示了通过节拍频率($f_{b}$)调制直接操纵 TCf 的方法,利用诱导信号及其谐波的内部混合,可以提高谐振系统的温度可调性。这项研究无需接口电子设备和双反馈回路,从而大大简化了谐振传感系统的系统级集成。[2024-0080]
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Microelectromechanical Systems
Journal of Microelectromechanical Systems 工程技术-工程:电子与电气
CiteScore
6.20
自引率
7.40%
发文量
115
审稿时长
7.5 months
期刊介绍: The topics of interest include, but are not limited to: devices ranging in size from microns to millimeters, IC-compatible fabrication techniques, other fabrication techniques, measurement of micro phenomena, theoretical results, new materials and designs, micro actuators, micro robots, micro batteries, bearings, wear, reliability, electrical interconnections, micro telemanipulation, and standards appropriate to MEMS. Application examples and application oriented devices in fluidics, optics, bio-medical engineering, etc., are also of central interest.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信