Jun Hu Park, Seung Min Joo, Tae Min Kim, Younghoon Kim, Hyun Ho Kim
{"title":"Synthesis of Ultrathin MoO2 Nanosheets via Chemical Vapor Deposition and Their Application to High-Performance Field-Effect Transistors","authors":"Jun Hu Park, Seung Min Joo, Tae Min Kim, Younghoon Kim, Hyun Ho Kim","doi":"10.1007/s13391-024-00511-1","DOIUrl":null,"url":null,"abstract":"<div><p>Two-dimensional (2D) transition metal dichalcogenides (TMDs) are excellent candidates for electronic applications because of their high carrier mobility, tunable bandgap energy depending on the number of layers, monolayer thickness, and the absence of dangling bonds on their surfaces. Despite these advantages, the crystalline structures of TMDs contain intrinsic defects such as vacancies, adatoms, grain boundaries, and substitutional impurities, which can cause large contact resistance at the source/drain interface. Customized engineering of interfaces and defects, which provides a method to modulate the properties of TMDs, is crucial as it can significantly enhance device performance. Herein, we explored a novel electrode to enhance the interface between electrode and semiconductor materials. we report the synthesis of high-quality atomically thin MoO<sub>2</sub> using atmospheric pressure chemical vapor deposition (APCVD) and its application to field-effect transistors. To improve crystallinity of MoO<sub>2</sub>, we investigated the influence of hydrogen concentration, a key parameter in the reduction process, on the synthesis of high-crystallinity MoO₂. By adding NaCl to MoO₃ powder, we optimized the synthesis of high-crystallinity MoO₂. Utilizing the optimized MoO₂, we fabricated transistors that exhibited a mobility of 29.1 cm²/V∙s and an on/off ratio of 1.78 × 10⁴, demonstrating excellent performance. Our findings confirm that single-crystal MoO<sub>2</sub> can be effectively applied as a contact electrode in high-performance two-dimensional semiconductor devices.</p></div>","PeriodicalId":536,"journal":{"name":"Electronic Materials Letters","volume":"20 6","pages":"818 - 826"},"PeriodicalIF":2.1000,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Materials Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s13391-024-00511-1","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Two-dimensional (2D) transition metal dichalcogenides (TMDs) are excellent candidates for electronic applications because of their high carrier mobility, tunable bandgap energy depending on the number of layers, monolayer thickness, and the absence of dangling bonds on their surfaces. Despite these advantages, the crystalline structures of TMDs contain intrinsic defects such as vacancies, adatoms, grain boundaries, and substitutional impurities, which can cause large contact resistance at the source/drain interface. Customized engineering of interfaces and defects, which provides a method to modulate the properties of TMDs, is crucial as it can significantly enhance device performance. Herein, we explored a novel electrode to enhance the interface between electrode and semiconductor materials. we report the synthesis of high-quality atomically thin MoO2 using atmospheric pressure chemical vapor deposition (APCVD) and its application to field-effect transistors. To improve crystallinity of MoO2, we investigated the influence of hydrogen concentration, a key parameter in the reduction process, on the synthesis of high-crystallinity MoO₂. By adding NaCl to MoO₃ powder, we optimized the synthesis of high-crystallinity MoO₂. Utilizing the optimized MoO₂, we fabricated transistors that exhibited a mobility of 29.1 cm²/V∙s and an on/off ratio of 1.78 × 10⁴, demonstrating excellent performance. Our findings confirm that single-crystal MoO2 can be effectively applied as a contact electrode in high-performance two-dimensional semiconductor devices.
期刊介绍:
Electronic Materials Letters is an official journal of the Korean Institute of Metals and Materials. It is a peer-reviewed international journal publishing print and online version. It covers all disciplines of research and technology in electronic materials. Emphasis is placed on science, engineering and applications of advanced materials, including electronic, magnetic, optical, organic, electrochemical, mechanical, and nanoscale materials. The aspects of synthesis and processing include thin films, nanostructures, self assembly, and bulk, all related to thermodynamics, kinetics and/or modeling.