Single active Au1O5 clusters for metabolism-inspired sepsis management through immune regulation

IF 13.2 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
{"title":"Single active Au1O5 clusters for metabolism-inspired sepsis management through immune regulation","authors":"","doi":"10.1016/j.nantod.2024.102416","DOIUrl":null,"url":null,"abstract":"<div><p>Artificial enzymes with reprogrammed and augmented catalytic activities hold significant potential in biomedicine. However, common issues with biocatalysts are the presence of numerous inactive site atoms, leading to inefficiencies in their catalytic processes. To leverage the full potential of active catalytic sites, we aim to minimize the biocatalyst structure, transitioning from nanoparticles or polymetallic atomic clusters down to singular-active-unit molecules. In this context, we have developed a unique single active-site cluster molecule, Au<sub>1</sub>-O<sub>5</sub>-Na<sub>9</sub>-(OH)<sub>4</sub> (AuO) clusters, comprising a single gold atom, five oxygen atoms, and a protective layer, where Au-O acts as a singular-active site displaying elevated catalytic activities without inefficiencies associated with biocatalytic reactions. AuO clusters demonstrate activities reminiscent of nicotinamide adenine dinucleotide oxidase (NOX), glutathione peroxidase (GPx), and urease, among other oxidoreductase functions, through optimal utilization of atoms. Clusters are instrumental in enhancing the redox balance, mitigating inflammation, and averting inflammation-induced cellular apoptosis, thereby preserving immune balance in sepsis. These mechanisms are crucial in sepsis pathogenesis. Demonstrating GPx-like and NOX-like capabilities, the AuO clusters have shown remarkable effectiveness against lipopolysaccharide-induced and cecum ligation puncture-induced multiorgan damage, underscoring their substantial promise for sepsis management.</p></div>","PeriodicalId":395,"journal":{"name":"Nano Today","volume":null,"pages":null},"PeriodicalIF":13.2000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Today","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S174801322400272X","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Artificial enzymes with reprogrammed and augmented catalytic activities hold significant potential in biomedicine. However, common issues with biocatalysts are the presence of numerous inactive site atoms, leading to inefficiencies in their catalytic processes. To leverage the full potential of active catalytic sites, we aim to minimize the biocatalyst structure, transitioning from nanoparticles or polymetallic atomic clusters down to singular-active-unit molecules. In this context, we have developed a unique single active-site cluster molecule, Au1-O5-Na9-(OH)4 (AuO) clusters, comprising a single gold atom, five oxygen atoms, and a protective layer, where Au-O acts as a singular-active site displaying elevated catalytic activities without inefficiencies associated with biocatalytic reactions. AuO clusters demonstrate activities reminiscent of nicotinamide adenine dinucleotide oxidase (NOX), glutathione peroxidase (GPx), and urease, among other oxidoreductase functions, through optimal utilization of atoms. Clusters are instrumental in enhancing the redox balance, mitigating inflammation, and averting inflammation-induced cellular apoptosis, thereby preserving immune balance in sepsis. These mechanisms are crucial in sepsis pathogenesis. Demonstrating GPx-like and NOX-like capabilities, the AuO clusters have shown remarkable effectiveness against lipopolysaccharide-induced and cecum ligation puncture-induced multiorgan damage, underscoring their substantial promise for sepsis management.

单个活性 Au1O5 簇通过免疫调节实现新陈代谢启发下的败血症管理
具有重新编程和增强催化活性的人造酶在生物医学领域具有巨大潜力。然而,生物催化剂的常见问题是存在大量非活性位点原子,导致其催化过程效率低下。为了充分发挥活性催化位点的潜力,我们的目标是将生物催化剂的结构最小化,从纳米颗粒或多金属原子团过渡到单一活性单元分子。在这种情况下,我们开发了一种独特的单活性位点簇分子--Au-O-Na-(OH) (AuO) 簇,它由一个金原子、五个氧原子和一个保护层组成,其中 Au-O 作为一个单活性位点,显示出较高的催化活性,而不会产生与生物催化反应相关的低效率。氧化金簇通过对原子的最佳利用,显示出与烟酰胺腺嘌呤二核苷酸氧化酶(NOX)、谷胱甘肽过氧化物酶(GPx)和脲酶以及其他氧化还原酶功能相似的活性。细胞簇有助于增强氧化还原平衡、减轻炎症和避免炎症诱导的细胞凋亡,从而维护败血症中的免疫平衡。这些机制在败血症发病机制中至关重要。氧化金簇具有类似 GPx 和 NOX 的能力,对脂多糖诱导的多器官损伤和盲肠结扎穿刺诱导的多器官损伤有显著效果,这突出表明它们在脓毒症治疗中大有可为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nano Today
Nano Today 工程技术-材料科学:综合
CiteScore
21.50
自引率
3.40%
发文量
305
审稿时长
40 days
期刊介绍: Nano Today is a journal dedicated to publishing influential and innovative work in the field of nanoscience and technology. It covers a wide range of subject areas including biomaterials, materials chemistry, materials science, chemistry, bioengineering, biochemistry, genetics and molecular biology, engineering, and nanotechnology. The journal considers articles that inform readers about the latest research, breakthroughs, and topical issues in these fields. It provides comprehensive coverage through a mixture of peer-reviewed articles, research news, and information on key developments. Nano Today is abstracted and indexed in Science Citation Index, Ei Compendex, Embase, Scopus, and INSPEC.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信