Quotient complex (QC)-based machine learning for 2D perovskite design

Chuan-Shen Hu, Rishikanta Mayengbam, Kelin Xia, Tze Chien Sum
{"title":"Quotient complex (QC)-based machine learning for 2D perovskite design","authors":"Chuan-Shen Hu, Rishikanta Mayengbam, Kelin Xia, Tze Chien Sum","doi":"arxiv-2407.16996","DOIUrl":null,"url":null,"abstract":"With remarkable stability and exceptional optoelectronic properties,\ntwo-dimensional (2D) halide layered perovskites hold immense promise for\nrevolutionizing photovoltaic technology. Presently, inadequate representations\nhave substantially impeded the design and discovery of 2D perovskites. In this\ncontext, we introduce a novel computational topology framework termed the\nquotient complex (QC), which serves as the foundation for the material\nrepresentation. Our QC-based features are seamlessly integrated with learning\nmodels for the advancement of 2D perovskite design. At the heart of this\nframework lies the quotient complex descriptors (QCDs), representing a quotient\nvariation of simplicial complexes derived from materials unit cell and periodic\nboundary conditions. Differing from prior material representations, this\napproach encodes higher-order interactions and periodicity information\nsimultaneously. Based on the well-established New Materials for Solar\nEnergetics (NMSE) databank, our QC-based machine learning models exhibit\nsuperior performance against all existing counterparts. This underscores the\nparamount role of periodicity information in predicting material functionality,\nwhile also showcasing the remarkable efficiency of the QC-based model in\ncharacterizing materials structural attributes.","PeriodicalId":501119,"journal":{"name":"arXiv - MATH - Algebraic Topology","volume":"262 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Algebraic Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.16996","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

With remarkable stability and exceptional optoelectronic properties, two-dimensional (2D) halide layered perovskites hold immense promise for revolutionizing photovoltaic technology. Presently, inadequate representations have substantially impeded the design and discovery of 2D perovskites. In this context, we introduce a novel computational topology framework termed the quotient complex (QC), which serves as the foundation for the material representation. Our QC-based features are seamlessly integrated with learning models for the advancement of 2D perovskite design. At the heart of this framework lies the quotient complex descriptors (QCDs), representing a quotient variation of simplicial complexes derived from materials unit cell and periodic boundary conditions. Differing from prior material representations, this approach encodes higher-order interactions and periodicity information simultaneously. Based on the well-established New Materials for Solar Energetics (NMSE) databank, our QC-based machine learning models exhibit superior performance against all existing counterparts. This underscores the paramount role of periodicity information in predicting material functionality, while also showcasing the remarkable efficiency of the QC-based model in characterizing materials structural attributes.
基于商数复合(QC)的二维包晶设计机器学习
二维(2D)卤化物层状过氧化物具有非凡的稳定性和特殊的光电特性,为光电技术的革命带来了巨大的希望。目前,不充分的表征极大地阻碍了二维过氧化物的设计和发现。在这种情况下,我们引入了一种新颖的计算拓扑框架,称为商复合体(QC),作为材料表征的基础。我们基于 QC 的特征与学习模型无缝集成,促进了二维包晶设计的发展。该框架的核心是商复合物描述符(QCD),它代表了从材料单胞和周期边界条件衍生出的简单复合物的商变化。与之前的材料表征不同,这种方法同时编码了高阶相互作用和周期性信息。基于成熟的太阳能新材料(NMSE)数据库,我们的基于 QC 的机器学习模型与所有现有的同类模型相比表现出更优越的性能。这强调了周期性信息在预测材料功能方面的重要作用,同时也展示了基于 QC 的模型在表征材料结构属性方面的显著效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信