The $\mathbb{Z}/p$-equivariant spectrum $BP\mathbb{R}$ for an odd prime $p$

Po Hu, Igor Kriz, Petr Somberg, Foling Zou
{"title":"The $\\mathbb{Z}/p$-equivariant spectrum $BP\\mathbb{R}$ for an odd prime $p$","authors":"Po Hu, Igor Kriz, Petr Somberg, Foling Zou","doi":"arxiv-2407.16599","DOIUrl":null,"url":null,"abstract":"In the present paper, we construct a $\\mathbb{Z}/p$-equivariant analog of the\n$\\mathbb{Z}/2$-equivariant spectrum $BP\\mathbb{R}$ previously constructed by Hu\nand Kriz. We prove that this spectrum has some of the properties conjectured by\nHill, Hopkins, and Ravenel. Our main construction method is an\n$\\mathbb{Z}/p$-equivariant analog of the Brown-Peterson tower of $BP$, based on\na previous description of the $\\mathbb{Z}/p$-equivariant Steenrod algebra with\nconstant coefficients by the authors. We also describe several variants of our\nconstruction and comparisons with other known equivariant spectra.","PeriodicalId":501119,"journal":{"name":"arXiv - MATH - Algebraic Topology","volume":"15 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Algebraic Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.16599","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In the present paper, we construct a $\mathbb{Z}/p$-equivariant analog of the $\mathbb{Z}/2$-equivariant spectrum $BP\mathbb{R}$ previously constructed by Hu and Kriz. We prove that this spectrum has some of the properties conjectured by Hill, Hopkins, and Ravenel. Our main construction method is an $\mathbb{Z}/p$-equivariant analog of the Brown-Peterson tower of $BP$, based on a previous description of the $\mathbb{Z}/p$-equivariant Steenrod algebra with constant coefficients by the authors. We also describe several variants of our construction and comparisons with other known equivariant spectra.
奇素数$p$的$\mathbb{Z}/p$-等变谱$BP\mathbb{R}$
在本文中,我们构建了一个$\mathbb{Z}/p$-常量类似于Huand Kriz之前构建的$BP\mathbb{R}$-常量谱。我们证明这个谱具有希尔、霍普金斯和拉文内尔猜想的一些性质。我们的主要构造方法是$BP$的布朗-彼得森塔的$\mathbb{Z}/p$变量类似物,它基于作者先前对具有常数系数的$\mathbb{Z}/p$变量斯泰恩罗德代数的描述。我们还描述了我们构造的几种变体,以及与其他已知等变谱的比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信