Tzu-Yi Chang, Gavin Vandenbroeder, David M. Frazer, Dewen Yushu, Stephanie Pitts, Tianyi Chen
{"title":"Nanoindentation Stress Relaxation to Quantify Dislocation Velocity–Stress Exponent","authors":"Tzu-Yi Chang, Gavin Vandenbroeder, David M. Frazer, Dewen Yushu, Stephanie Pitts, Tianyi Chen","doi":"10.3390/cryst14080680","DOIUrl":null,"url":null,"abstract":"This work reports a new methodology using indentation stress relaxation to characterize the dislocation velocity–stress exponent. Through the indentation stress relaxation process, the dislocation structure builds up at the rate governed by dislocation velocity, which is a function of the externally applied stress. The relationship between the dislocation velocity and stress can thus be derived from the indentation stress relaxation data of the stress as a function of time. In this study, instrumented nanoindentation stress relaxation experiments were performed on pure aluminum samples, following three different initial displacement rates of 100, 400, and 800 nm/s. Based on the scaling properties of dislocation kinetics, the data were interpreted to derive a dislocation velocity–stress exponent of 2.5 ± 0.5 for room-temperature aluminum. Crystal plasticity finite-element simulations were performed to illustrate the sensitivity of the proposed nanoindentation stress relaxation methodology to the dislocation velocity–stress exponent value.","PeriodicalId":10855,"journal":{"name":"Crystals","volume":"31 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crystals","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/cryst14080680","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CRYSTALLOGRAPHY","Score":null,"Total":0}
引用次数: 0
Abstract
This work reports a new methodology using indentation stress relaxation to characterize the dislocation velocity–stress exponent. Through the indentation stress relaxation process, the dislocation structure builds up at the rate governed by dislocation velocity, which is a function of the externally applied stress. The relationship between the dislocation velocity and stress can thus be derived from the indentation stress relaxation data of the stress as a function of time. In this study, instrumented nanoindentation stress relaxation experiments were performed on pure aluminum samples, following three different initial displacement rates of 100, 400, and 800 nm/s. Based on the scaling properties of dislocation kinetics, the data were interpreted to derive a dislocation velocity–stress exponent of 2.5 ± 0.5 for room-temperature aluminum. Crystal plasticity finite-element simulations were performed to illustrate the sensitivity of the proposed nanoindentation stress relaxation methodology to the dislocation velocity–stress exponent value.
期刊介绍:
Crystals (ISSN 2073-4352) is an open access journal that covers all aspects of crystalline material research. Crystals can act as a reference, and as a publication resource, to the community. It publishes reviews, regular research articles, and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on article length. Full experimental details must be provided to enable the results to be reproduced. Crystals provides a forum for the advancement of our understanding of the nucleation, growth, processing, and characterization of crystalline materials. Their mechanical, chemical, electronic, magnetic, and optical properties, and their diverse applications, are all considered to be of importance.