Wireless Frequency‐Multiplexed Acoustic Array‐Based Acoustofluidics

Jiali Li, Luyu Bo, Teng Li, Penghui Zhao, Yingshan Du, Bowen Cai, Liang Shen, Wujin Sun, Wei Zhou, Zhenhua Tian
{"title":"Wireless Frequency‐Multiplexed Acoustic Array‐Based Acoustofluidics","authors":"Jiali Li, Luyu Bo, Teng Li, Penghui Zhao, Yingshan Du, Bowen Cai, Liang Shen, Wujin Sun, Wei Zhou, Zhenhua Tian","doi":"10.1002/admt.202400572","DOIUrl":null,"url":null,"abstract":"Acoustofluidics has shown great potential in enabling on‐chip technologies for driving liquid flows and manipulating particles and cells for engineering, chemical, and biomedical applications. To introduce on‐demand liquid sample processing and micro/nano‐object manipulation functions to wearable and embeddable electronics, wireless acoustofluidic chips are highly desired. This paper presents wireless acoustofluidic chips to generate acoustic waves carrying sufficient energy and achieve key acoustofluidic functions, including arranging particles and cells, generating fluid streaming, and enriching in‐droplet particles. To enable these functions, the wireless acoustofluidic chips leverage mechanisms, including inductive coupling‐based wireless power transfer (WPT), frequency multiplexing‐based control of multiple acoustic waves, and the resultant acoustic radiation and drag forces. For validation, the wirelessly generated acoustic waves are measured using laser vibrometry when different materials (e.g., bone, tissue, and hand) are inserted between the WPT transmitter and receiver. Moreover, the wireless acoustofluidic chips successfully arrange nanoparticles into different patterns, align cells into parallel pearl chains, generate streaming, and enrich in‐droplet microparticles. This research is anticipated to facilitate the development of embeddable wireless on‐chip flow generators, wearable sensors with liquid sample processing functions, and implantable devices with flow generation and acoustic stimulation abilities for engineering, veterinary, and biomedical applications.","PeriodicalId":7200,"journal":{"name":"Advanced Materials & Technologies","volume":"15 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials & Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/admt.202400572","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Acoustofluidics has shown great potential in enabling on‐chip technologies for driving liquid flows and manipulating particles and cells for engineering, chemical, and biomedical applications. To introduce on‐demand liquid sample processing and micro/nano‐object manipulation functions to wearable and embeddable electronics, wireless acoustofluidic chips are highly desired. This paper presents wireless acoustofluidic chips to generate acoustic waves carrying sufficient energy and achieve key acoustofluidic functions, including arranging particles and cells, generating fluid streaming, and enriching in‐droplet particles. To enable these functions, the wireless acoustofluidic chips leverage mechanisms, including inductive coupling‐based wireless power transfer (WPT), frequency multiplexing‐based control of multiple acoustic waves, and the resultant acoustic radiation and drag forces. For validation, the wirelessly generated acoustic waves are measured using laser vibrometry when different materials (e.g., bone, tissue, and hand) are inserted between the WPT transmitter and receiver. Moreover, the wireless acoustofluidic chips successfully arrange nanoparticles into different patterns, align cells into parallel pearl chains, generate streaming, and enrich in‐droplet microparticles. This research is anticipated to facilitate the development of embeddable wireless on‐chip flow generators, wearable sensors with liquid sample processing functions, and implantable devices with flow generation and acoustic stimulation abilities for engineering, veterinary, and biomedical applications.

Abstract Image

基于无线频率多路声阵列的声流体技术
声学流体技术在为工程、化学和生物医学应用提供驱动液体流动、操纵颗粒和细胞的片上技术方面显示出巨大的潜力。为了将按需液体样品处理和微/纳米物体操纵功能引入可穿戴和嵌入式电子设备,无线声学流体芯片是非常必要的。本文介绍的无线声学流体芯片可产生携带足够能量的声波,并实现关键的声学流体功能,包括排列颗粒和细胞、产生流体流和富集液滴内颗粒。为了实现这些功能,无线声流体芯片利用了各种机制,包括基于感应耦合的无线功率传输(WPT)、基于频率复用的多声波控制以及由此产生的声辐射和阻力。为了进行验证,在 WPT 发射器和接收器之间插入不同材料(如骨、组织和手)时,使用激光测振仪测量无线产生的声波。此外,无线声学流体芯片成功地将纳米粒子排列成不同的图案,将细胞排列成平行的珍珠链,产生流体,并富集液滴内的微粒子。预计这项研究将促进可嵌入式无线片上流动发生器、具有液体样本处理功能的可穿戴传感器以及具有流动发生和声学刺激能力的植入式设备的开发,从而为工程、兽医和生物医学应用提供帮助。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信