{"title":"Wafer-Scale ALD Synthesis of MoO3 Sulfurized to MoS2","authors":"Sachin Shendokar, Moha Feroz Hossen, Shyam Aravamudhan","doi":"10.3390/cryst14080673","DOIUrl":null,"url":null,"abstract":"Silicon has dimensional limitations in following Moore’s law; thus, new 2D materials complementing Silicon are being researched. Molybdenum disulfide (MoS2) is a prospective material anticipated to bridge the gap to complement Silicon and enhance the performances of semiconductor devices and embedded systems in the package. For a synthesis process to be of any relevance to the industry. it needs to be at the wafer scale to match existing Silicon wafer-processing standards. Atomic Layer Deposition (ALD) is one of the most promising techniques for synthesizing wafer-scale monolayer MoS2 due to its self-limiting, conformal, and low-temperature characteristics. This paper discusses the wafer-scale ALD synthesis of Molybdenum trioxide (MoO3) using Mo (CO)6 as a precursor with Ozone as a reactant. An ALD-synthesized wafer-scale MoO3 thin film was later sulfurized through Chemical Vapor Deposition (CVD) to transform into stoichiometric MoS2, which was evaluated using X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, Scanning Electron Microscopy (SEM), and Atomic Force Microscopy (AFM). The roles of activation energy and first-order reaction kinetics in determining the ALD recipe parameters of the pulse time, reactor temperature, and purge time are explicitly discussed in detail. Discretized pulsing for developing one-cycle ALD for monolayer growth is suggested. Remedial measures to overcome shortcomings observed during this research are suggested.","PeriodicalId":10855,"journal":{"name":"Crystals","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crystals","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/cryst14080673","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CRYSTALLOGRAPHY","Score":null,"Total":0}
引用次数: 0
Abstract
Silicon has dimensional limitations in following Moore’s law; thus, new 2D materials complementing Silicon are being researched. Molybdenum disulfide (MoS2) is a prospective material anticipated to bridge the gap to complement Silicon and enhance the performances of semiconductor devices and embedded systems in the package. For a synthesis process to be of any relevance to the industry. it needs to be at the wafer scale to match existing Silicon wafer-processing standards. Atomic Layer Deposition (ALD) is one of the most promising techniques for synthesizing wafer-scale monolayer MoS2 due to its self-limiting, conformal, and low-temperature characteristics. This paper discusses the wafer-scale ALD synthesis of Molybdenum trioxide (MoO3) using Mo (CO)6 as a precursor with Ozone as a reactant. An ALD-synthesized wafer-scale MoO3 thin film was later sulfurized through Chemical Vapor Deposition (CVD) to transform into stoichiometric MoS2, which was evaluated using X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, Scanning Electron Microscopy (SEM), and Atomic Force Microscopy (AFM). The roles of activation energy and first-order reaction kinetics in determining the ALD recipe parameters of the pulse time, reactor temperature, and purge time are explicitly discussed in detail. Discretized pulsing for developing one-cycle ALD for monolayer growth is suggested. Remedial measures to overcome shortcomings observed during this research are suggested.
期刊介绍:
Crystals (ISSN 2073-4352) is an open access journal that covers all aspects of crystalline material research. Crystals can act as a reference, and as a publication resource, to the community. It publishes reviews, regular research articles, and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on article length. Full experimental details must be provided to enable the results to be reproduced. Crystals provides a forum for the advancement of our understanding of the nucleation, growth, processing, and characterization of crystalline materials. Their mechanical, chemical, electronic, magnetic, and optical properties, and their diverse applications, are all considered to be of importance.